生成三分图trimap及前景背景融合

该博客介绍了一种使用OpenCV库生成随机三分图Trimap的方法。通过随机选择核大小和迭代次数,结合膨胀和腐蚀操作,创建了一个用于图像分割的中间表示。Trimap在0、255和128之间填充,用于区分前景、背景和未知区域。
摘要由CSDN通过智能技术生成

参考1参考2

一 生成三分图trimap

import random
import numpy as np 
import cv2

def gen_trimap(alpha):
    k_size = random.choice(range(1, 5)) # 随机选择核大小
    iterations = np.random.randint(1, 20)
    ###cv2.getStructuringElement( )
    ###这个函数的第一个参数表示内核的形状,有三种形状可以选择。矩形:MORPH_RECT;交叉形:MORPH_CROSS;椭圆形:MORPH_ELLIPSE
    ###第二和第三个参数分别是内核的尺寸以及锚点的位置。一般在调用erode以及dilate函数之前,先定义一个Mat类型的变量来获得
    ###getStructuringElement函数的返回值: 对于锚点的位置,有默认值Point(-1,-1),表示锚点位于中心点。element形状唯一依赖锚点位置,其他情况下,锚点只是影响了形态学运算结果的偏移。
    kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (k_size, k_size))
    
    dilated = cv2.dilate(alpha, kernel, iterations)
    eroded = cv2.erode(alpha, kernel, iterations)
    trimap = np.zeros(alpha.shape)
    trimap.fill(128)
    trimap[eroded >= 255] = 255
    trimap[dilated <= 0] = 0
    
    return trimap

if __name__ == "__main__":
    alpha = xxxx
    assert (np.unique(alpha_np) == [0, 255]).any()
    alpha = alpha * 255
    gen_trimap(alpha)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

欢天喜地小姐姐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值