电力系统谐波分析

电力系统谐波分析


一、实验目的

1.了解电力系统谐波信号的特点及分析方法;
2.综合利用数字信号处理技术实现对电力系统谐波信号的分析;
3.使学生进一步巩固数字滤波器的基本概念、理论、分析方法和实现方法;
4.巩固学生利用傅立叶变换进行谱分析的能力;
5.提高学生利用MATLAB语言处理信号的编程能力;
6.培养学生分析及解决实际问题的能力。

二、实验原理

1.电力谐波的定义以及特点
谐波定义:交流非正弦信号可以分解为不同频率的正弦分量的线性组合。当正弦波分量的频率与原交流信号的频率相同时,称为基波。谐波,从严格意义来讲,是指电流中所含有的频率为基波的整数倍的电量,一般是指对周期性的非正弦电量进行傅立叶级数分解,其余大于基波频率的电流产生的电量。从广义上讲,由于交流电网有效分量为工频单一频率,因此任何与工频频率不同的成分都可以称之为谐波。
谐波特点:谐波使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使寿命缩短,甚至发生故障或烧毁。谐波可引起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容器等设备烧毁。
谐波的数学表达式
在这里插入图片描述
上式称为的傅立叶级数,其中,
在这里插入图片描述,n为整数,n>=0
在这里插入图片描述 , n为整数,n>=1

2.电力谐波的分析
谐波分析是信号处理的一种基本手段。采用快速傅立叶变换(FFT)算法进行谐波分析,非整周期截断时会产生频谱泄漏和栅栏效应,影响谐波分析精度。针对FFT算法的不足,利用窗函数法设计FIR滤波器可有效提高计算精度。采用窗函数法,使谱函数的主瓣包含更多的能量,相应旁瓣幅度更小,从而加大阻带衰减。其中,哈明窗能量更加集中在主瓣中,主瓣的能量约占99.96%,旁瓣峰值幅度为40dB,主瓣宽度精确值为6.6π/N。这里采用哈明窗进行分析。

三、实验内容及步骤

1.自行模拟产生不同的谐波分量(至少3次以上),例如:x=sin(2pit50)+0.3(2pit250)+0.2sin(2pit*500),其中包含50Hz的1次、5次、10次谐波。
2.画出模拟谐波的信号的波形及频谱;
3.设计相应的滤波器去除不同次数谐波分量,画出相应的滤波器频率特性曲线;
4.将含有不同谐波的模拟信号通过所设计的滤波器,画出相应的基波信号、各次谐波信号及其频谱。
5.画出有助于分析问题的一些辅助图形等。

四、实验设计方法

1.对x=sin(2pit50)+0.3(2pit250)+0.2sin(2pit*500)信号以3kHz进行等时间间隔采样,采样点数为256个,则其采样时间t=256/3000秒,即采样周期。利用MATLAB软件绘制出模拟谐波信号的波形及频谱。
2.利用哈明窗法设计低通FIR数字滤波器进行滤波,可得到1次谐波信号。FIR滤波器频率特性可通过h(n)的损耗函数曲线来描述。利用MATLAB软件绘制出低通FIR数字滤波器h(n)的波形和损耗函数曲线,并绘制出1次谐波信号波形和频谱。
3.利用哈明窗法设计带通FIR数字滤波器进行滤波,可得到5次谐波信号。利用MATLAB软件绘制出带通FIR数字滤波器h(n)的波形和损耗函数曲线,并绘制出5次谐波信号波形和频谱。
4.利用哈明窗法设计高通FIR数字滤波器进行滤波,可得到10次谐波信号。利用MATLAB软件绘制出高通FIR数字滤波器h(n)的波形和损耗函数曲线,并绘制出10次谐波信号波形和频谱。
哈明窗函数:wn=hamming(N) %列向量wn中返回长度为N的哈明窗函数。
fir1可实现线性相位FIR数字滤波器的标准窗函数法设计。

五、波形

1.模拟谐波的信号的波形及频谱
在这里插入图片描述
2.(1)基波对应FIR低通滤波器的波形及损耗函数曲线
在这里插入图片描述
(2)滤波后的基波信号波形及频谱

在这里插入图片描述
3.(1)5次谐波对应FIR带通滤波器的波形及损耗函数曲线
在这里插入图片描述
(2)滤波后的5次谐波信号波形及频谱
在这里插入图片描述
4.(1)10次谐波对应FIR带通滤波器的波形及损耗函数曲线
在这里插入图片描述
(2)滤波后的10次谐波信号波形及频谱
在这里插入图片描述

六、代码

1、模拟谐波的信号的波形及频谱

fs=3000;%采样频率
N1=256;%采样点数
N2=1024;
n1=0:N1-1;
t=n1/fs;
x1=sin(2 * pi * t * 50)+0.3 * sin(2 * pi * t * 250)+0.2 * sin(2 * pi * t * 500);
%信号绘图部分
figure(1)
subplot(2,1,1);%绘制时域波形
plot(t,x1);
title('模拟谐波信号x1的波形');
xlabel('时间t');
w1=2000 * pi * (0:N2-1)/N2;
y1=x1 * exp(-1* i * t' * w1);
subplot(2,1,2);%绘制频域域波形
plot(w1/(2 * pi),abs(y1));
title('模拟谐波信号x1的频谱');
xlabel('频率f');

2、基波对应的FIR低通滤波器损耗函数曲线、基波信号波形及频谱

%50HZ的1次谐波信号
%利用FIR设计低通滤波器
wp=1/30 * 2 * pi;
ws=0.05 * 2 * pi;
Bt=ws-wp;%计算过渡带宽度
N0=ceil(6.6 * pi/Bt);
N=N0+mod(N0+1,2);%确保长度N是奇数
wc=(wp+ws)/2/pi;%关于pi归一化
hn=fir1(N,wc,'low',hamming(N+1));

%滤波器绘图部分
N2=1024;
hw=fft(hn,N2);
n=0:N;
k=1:N2/2;
w=2 * (0:N2/2-1)/N2;
figure(2)
subplot(2,1,1)
stem(n,hn);%绘制相应的滤波器波形
axis([0,200,-0.1,0.1]);
xlabel('n');ylabel('h(n)');
title('滤波器h(n)波形')
grid on
subplot(2,1,2);%绘制相应滤波器的损耗函数曲线
plot(w,20 * log10(abs(hw(k))));
xlabel('w/π');
ylabel('20lg|H_g(w)');
title('损耗函数曲线')
grid on

%经过低通滤波器后的信号
figure(3)
x2=conv(x1,hn);%时域卷积
fs=3000;%采样频率
Y1=length(x2);%采样后信号长度
n=0:Y1-1;
t=n/fs;
subplot(2,1,1);%绘制时域波形
plot(t,x2);
xlabel('时间t');
title('基波信号波形');
axis([0.03,0.10,-2,2]);
y2=x2 * exp(-1 * i * t' * w1);
subplot(2,1,2);%绘制频域波形
plot(w1/(2 * pi),abs(y2));
xlabel('频率f');
axis([0,600,0,150]);
title('基波信号频谱');

3、5次谐波对应的哈明窗损耗函数曲线、5次谐波信号波形及频谱

 %50Hz的5次谐波信号 
fs=3000;%采样频率
N1=256;%采样点数
N2=1024;
n1=0:N1-1;
t=n1/fs;
x1=sin(2 * pi * t * 50)+0.3 * sin(2 * pi * t * 250)+0.2 * sin(2 * pi * t * 500);
 
%利用FIR设计带通滤波器
wlp=1/15 * 2 * pi;wls=0.05 * 2 * pi;
wup=0.1 * 2 * pi ;wus=2/15 * 2 * pi;%设计指标参数赋值
Bt=wus-wup;
N0=ceil(6.6 * pi/Bt);
wp=[(wls+wlp)/2/pi,(wus+wup)/2/pi];%设置理想带通截止频率
N=N0+mod(N0+1,2);                  %确保长度N是奇数
hn=fir1(N,wp,'bandpass',hamming(N+1));
 
%滤波器绘图部分
figure(1)
hw=fft(hn,N2);
n=0:N;
k=1:N2/2;
w=2 * (0:N2/2-1)/N2;
subplot(2,1,1);   %绘制哈明窗波形
stem(n,hn,'.');
axis([0,100,-0.2,0.2]);
xlabel('n');ylabel('h(n)');
title('滤波器h(n)波形')
grid on
subplot(2,1,2);%绘制相应滤波器h(n)的损耗函数曲线
plot(w,20 * log10(abs(hw(k))));
xlabel('w/π');
ylabel('20lg|H_g(w)|');
title('损耗函数曲线')
axis([0,1,-150,50]);
grid on
 
%经过带通滤波器后的信号
x2=conv(x1,hn);%时域卷积
fs=3000;%采样频率
Y1=length(x2);%采样后信号长度
n=0:Y1-1;
t=n/fs;
figure(2)
subplot(2,1,1);%绘制时域波形
plot(t,x2);
xlabel('时间t');
title('5次谐波信号波形');
axis([0.02,0.1,-0.5,0.5]);
w=2000 * pi * (0:N2-1)/N2;
y2=x2 * exp(-1 * i * t' * w);
subplot(2,1,2);%绘制频域波形
plot(w/(2 * pi),abs(y2));
xlabel('频率f');
axis([0,600,0,50]);
title('5次谐波信号频谱');

4、10次谐波对应的哈明窗损耗函数曲线、10次谐波信号波形及频谱

%50Hz的10次谐波信号 
fs=3000;%采样频率
N1=256;%采样点数
N2=1024;
n1=0:N1-1;
t=n1/fs;
x1=sin(2 * pi * t * 50)+0.3 * sin(2 * pi * t * 250)+0.2 * sin(2 * pi * t * 500);
 
%利用FIR设计高通滤波器
wp=0.15 *  2 * pi;
ws=2/15 * 2 * pi;
Bt=wp-ws;
N0=ceil(6.6 * pi/Bt);
N=N0+mod(N0+1,2);%确保h(n)长度N是奇数
wc=(wp+ws)/2/pi;%关于pi归一化
hn=fir1(N-1,wc,'high',hamming(N));
 
%滤波器绘图部分
figure(1)
hw=fft(hn,N2);
n=0:N-1;
k=1:N2/2;
w=2 * (0:N2/2-1)/N2;
subplot(2,1,1); %绘制哈明窗波形
stem(n,hn,'.');
axis([0,200,-0.5,1]);
xlabel('n');
ylabel('h(n)');
title('滤波器h(n)波形')
grid on
subplot(2,1,2);%绘制h(n)的损耗函数曲线
plot(w,20 * log10(abs(hw(k))));
axis([0,1,-150,5]);
xlabel('w/π');
ylabel('20lg|H_g(w)|');
title('损耗函数曲线')
grid on
 
%经过高通滤波器后的信号
x2=conv(x1,hn);%时域卷积
fs=3000;%采样频率
Y1=length(x2);%采样后信号长度
n=0:Y1-1;
t=n/fs;
figure(2)%滤波后的信号绘图部分
subplot(2,1,1);%绘制时域波形
plot(t,x2);
xlabel('时间t');
title('10次谐波信号波形');
axis([0.04,0.1,-0.3,0.3]);
w=2000 * pi * (0:N2-1)/N2;
y2=x2 * exp(-1 * i * t' * w);
subplot(2,1,2);%绘制频域波形
plot(w/(2 * pi),abs(y2));
xlabel('频率f');
axis([0,1000,0,40]);
title('10次谐波信号频谱');
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

欢天喜地小姐姐

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值