二值图像分析—Hu矩实现轮廓匹配

在OpenCV中,可以很方便的得到Hu不变距,Hu矩在图像旋转、缩放、平移等操作后,仍能保持矩的不变性,所以有时候用Hu不变距更能识别图像的特征。

Hu矩由于具有尺度、旋转、平移不变性,可以用来做匹配。

Hu不变矩主要是利用归一化中心矩构造了7个不变特征矩,由二阶矩和三阶矩可以导出7个不变矩:

在这里插入图片描述

opencv中计算Hu矩函数

  • 说明
    该函数计算7个Hu不变量。
    在这里插入图片描述
    这些值被证明对图像比例,旋转和反射是不变的,但第七个值因反射而改变。这种不变性是在无限图像分辨率的假设下证明的。对于光栅图像,原始图像和变换后图像的计算出的Hu不变量有些不同。
  • 声明
    CV_EXPORTS void HuMoments( 
    		const Moments& moments, //
    		double hu[7] );//输出Hu不变量
    
    /** @overload */
    CV_EXPORTS_W void HuMoments( const Moments& m, OutputArray hu );
    



匹配形状的距离

OpenCV提供了一个名为matchShapes的函数,它接收两个图像(或轮廓)并使用Hu Moments找到它们之间的距离。 所以,不必在自己计算hu 矩。 只需将图像二值化并使用matchShapes。

  • 说明
    函数比较两个形状,3个被实现的方法都使用hu 不变量。

  • 声明

    double matchShapes( 
       InputArray contour1,//第一张轮廓或者灰度图像
       InputArray contour2,//第二张轮廓或灰度图像
       int method,         //比较方法
       double parameter    //特定方法的参数,目前不支持
    );
    
  • method 参数

    enum ShapeMatchModes {
        CONTOURS_MATCH_I1  =1, 
        CONTOURS_MATCH_I2  =2, 
        CONTOURS_MATCH_I3  =3  
    };
    

    D ( A , B ) D(A,B) D(A,B)为形状A和B之间的距离,并且 H i A H_i^A HiA H i B H_i^B HiB为形状A和B的对数变换的Hu矩。定义对应于三种情况的距离:
    1.CONTOURS_MATCH_I1
    D ( A , B ) = ∑ i = 0 6 ∣ 1 H i B − 1 H i A ∣ D(A,B)=\sum_{i=0}^6 |\frac{1}{H_i^B}-\frac{1}{H_i^A}| D(A,B)=i=06HiB1HiA1
    2.CONTOURS_MATCH_I2 =2
    D ( A , B ) = ∑ i = 0 6 ∣ H i B − H i A ∣ D(A,B)=\sum_{i=0}^6 |H_i^B -H_i^A| D(A,B)=i=06HiBHiA
    3.CONTOURS_MATCH_I3 =3
    D ( A , B ) = ∑ i = 0 6 ∣ H i A − H i B ∣ ∣ H i A ∣ D(A,B)=\sum_{i=0}^6 \frac{|H_i^A-H_i^B|}{|H_i^A|} D(A,B)=i=06HiAHiAHiB

举例

void getHuMoments(Mat &src1,Mat &src2){
	//1.转化为灰度图像
	Mat gray1, binary1, dst1;
	Mat gray2, binary2, dst2;
	cvtColor(src1, gray1, COLOR_BGR2GRAY);
	cvtColor(src2, gray2, COLOR_BGR2GRAY);

	imshow("src1", src1);
	imshow("src2", src2);

	//2.二值化
	threshold(gray1, binary1, 127, 255, THRESH_BINARY | THRESH_OTSU);
	imshow("binary1", binary1);
	threshold(gray2, binary2, 127, 255, THRESH_BINARY | THRESH_OTSU);
	imshow("binary2", binary2);

	//3.计算hu矩
	Moments ms1,ms2;
	ms1 = moments(binary1, false);
	ms2 = moments(binary2, false);
	double hu1[7],hu2[7];
	HuMoments(ms1, hu1);
	HuMoments(ms2, hu2);



	//4.log转化
	cout << endl << endl;
	cout << "  img1:" << endl;
	for (size_t i = 0; i < 7; i++)
	{
		hu1[i] = -1 * copysign(1.0, hu1[i]) * log10(abs(hu1[i]));
		cout << "    hu1[" << i+1 << "]=" << hu1[i] << endl;
	}
	cout << endl;
	
	cout << "  img2:" << endl;
	for (size_t i = 0; i < 7; i++)
	{
		hu2[i] = -1 * copysign(1.0, hu2[i]) * log10(abs(hu2[i]));
		cout << "    hu2[" << i+1 << "]=" << hu2[i] << endl;
	}

	

	//5.形状匹配
	double d1 = matchShapes(binary1, binary2, CONTOURS_MATCH_I1, 0);
	double d2 = matchShapes(binary1, binary2, CONTOURS_MATCH_I2, 0);
	double d3 = matchShapes(binary1, binary2, CONTOURS_MATCH_I3, 0);

	cout << "  hu矩匹配值:" << endl;
	cout << "    CONTOURS_MATCH_T1 :" << d1 << endl;
	cout << "    CONTOURS_MATCH_T2 :" << d2 << endl;
	cout << "    CONTOURS_MATCH_T3 :" << d3 << endl;

}


int main() {
	//Mat src = imread("D:/test/huahua.png");
	Mat src1 = imread("D:/test/s1.png");
	Mat src2 = imread("D:/test/s3.png");

	if (src1.empty()||src2.empty()) {
		cout << " input the image error!" << endl;
	}
	getHuMoments(src1, src2);
	
	waitKey(0);
	return 0;
}
  • 匹配旋转的图像的结果:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  • 匹配同一张图片的效果:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  • 匹配两张完全不同的图形:
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

学习:
图像特征:几何不变矩–Hu矩

基于Hu距的匹配方式–OpenCV

[学习OpenCV]Moment矩,Hu不变矩,轮廓匹配/形状匹配 -1

OpenCV3学习(9.4)轮廓矩及其匹配(Moments 、HuMoments、matchShape函数)

Opencv:基于Hu-moments(hu矩)的形状匹配

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值