hdu1525&poj2348 Euclid's Game

Euclid's Game
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 10195 Accepted: 4153


Two players, Stan and Ollie, play, starting with two natural numbers. Stan, the first player, subtracts any positive multiple of the lesser of the two numbers from the greater of the two numbers, provided that the resulting number must be nonnegative. Then Ollie, the second player, does the same with the two resulting numbers, then Stan, etc., alternately, until one player is able to subtract a multiple of the lesser number from the greater to reach 0, and thereby wins. For example, the players may start with (25,7): 
         25 7

11 7
4 7
4 3
1 3
1 0

an Stan wins.


The input consists of a number of lines. Each line contains two positive integers giving the starting two numbers of the game. Stan always starts.


For each line of input, output one line saying either Stan wins or Ollie wins assuming that both of them play perfectly. The last line of input contains two zeroes and should not be processed.

Sample Input

34 12
15 24
0 0

Sample Output

Stan wins
Ollie wins


Waterloo local 2002.09.28


每次操作,大的数减掉小的数的整数倍。一个数变为0 的时候结束。







如果a>=2*b.  那么 那个人肯定知道a%b,b是必胜态还是必败态。如果是必败态,先手将a,b变成a%b,b,那么先手肯定赢。如果是必胜态,先手将a,b变成a%b+b,b.那么对手只有将这两个数变成a%b,b,先手获胜。


如果是b<a<2*b  那么只有一条路:变成a-b,b  (这个时候0<a-b<b).这样一直下去看谁先面对上面的必胜状态。


所以假如面对b < a <2*b的状态,就先一步一步走下去。直到面对一个a%b==0 || a >=2*b的状态。


#include <iostream>
#include <string.h>
#include <algorithm>
#include <stdio.h>
using namespace std;

int main()
    int a,b;
        bool flag=true;
            if(a==b || a/b>=2)break;
        if(flag)printf("Stan wins\n");
        else printf("Ollie wins\n");
    return 0;



DescriptionnnIn one of his notebooks, Euclid gave a complex procedure for solving the following problem. With computers, perhaps there is an easier way. nnIn a 2D plane, consider a line segment AB, another point C which is not collinear with AB, and a triangle DEF. The goal is to find points G and H such that: nnH is on the ray AC (it may be closer to A than C or further away, but angle CAB is the same as angle HAB) nABGH is a parallelogram (AB is parallel to HG, AH is parallel to BG) nThe area of parallelogram ABGH is the same as the area of triangle DEF nnnInputnnThere will be several test cases. Each test case will consist of twelve real numbers, with no more than 3 decimal places each, on a single line. Those numbers will represent, in order: nnAX AY BX BY CX CY DX DY EX EY FX FY nnnwhere point A is (AX,AY), point B is (BX,BY), and so on. Points A, B and C are guaranteed to NOT be collinear. Likewise, D, E and F are also guaranteed to be non-collinear. Every number is guaranteed to be in the range from -1000.0 to 1000.0 inclusive. End of the input will be signified by a line with twelve 0.0's.nOutputnnFor each test case, print a single line with four decimal numbers. These represent points G and H, like this: nnGX GY HX HY nnnwhere point G is (GX,GY) and point H is (HX,HY). Print all values rounded to 3 decimal places of precision (NOT truncated). Print a single space between numbers. Do not print any blank lines between answers.nSample Inputnn0 0 5 0 0 5 3 2 7 2 0 4n1.3 2.6 12.1 4.5 8.1 13.7 2.2 0.1 9.8 6.6 1.9 6.7n0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0nSample Outputnn5.000 0.800 0.000 0.800n13.756 7.204 2.956 5.304


  • 广告
  • 抄袭
  • 版权
  • 政治
  • 色情
  • 无意义
  • 其他