题目描述
有n个小朋友坐成一圈,每人有ai个糖果。每人只能给左右两人传递糖果。每人每次传递一个糖果代价为1。
输入输出格式
输入格式:
小朋友个数n 下面n行 ai
输出格式:
求使所有人获得均等糖果的最小代价。
输入输出样例
输入样例#1: 复制
4 1 2 5 4
输出样例#1: 复制
4
说明
对于100%的数据 n<=10^6
题解:
洛谷题解处大佬:
一般的均分纸牌问题就相当于在第N个人与第1个人之间把环断开,此时这N个人站成一行,其持有的纸牌数、前缀和分别是:
A[1] S[1]
A[2] S[2]
…
A[N] S[N]
如果在第K个人之后把环断开站成一行,这N个人持有的纸牌数、前缀和分别是:
A[k+1] S[k+1]-S[k]
A[k+1] S[k+2]-S[k]
…
A[N] S[N]-S[k]
A[1] S[1]+S[N]-S[k]
…
A[k] S[k]+S[N]-S[k]
所以,所需最小花费为:sum(s[i]-s[k])(1<=i<=n)(因为S[n]是0)
当K取何值时上式最小?这就是“货仓选址”问题。所以我们将S数组从小到大排序,取中位数作为S[k]就是最优解。
代码:
#include<bits/stdc++.h>
using namespace std;
int n,i;
long long mx,ans,now,a[1000010];
int main(){
scanf("%d",&n);
for(i=1;i<=n;i++){
scanf("%lld",&a[i]);
mx+=a[i];
}
mx/=n;
for(i=1;i<=n;i++)a[i]=a[i-1]+a[i]-mx;
sort(a+1,a+n+1);
now=a[(n+1)/2];
for(i=1;i<=n;i++)ans+=abs(now-a[i]);
printf("%lld",ans);
}

该博客介绍了洛谷P2512题目的详细解法,讨论了如何在n个围成一圈的小朋友中,通过糖果传递使得每个人获得均等糖果的最小代价。这个问题转化为‘货仓选址’问题,通过排序S数组并取中位数作为断开点,可以得到最小代价。博客提供了题解思路和相关代码。
293

被折叠的 条评论
为什么被折叠?



