洛谷P2512 [HAOI2008]糖果传递

该博客介绍了洛谷P2512题目的详细解法,讨论了如何在n个围成一圈的小朋友中,通过糖果传递使得每个人获得均等糖果的最小代价。这个问题转化为‘货仓选址’问题,通过排序S数组并取中位数作为断开点,可以得到最小代价。博客提供了题解思路和相关代码。

题目描述

有n个小朋友坐成一圈,每人有ai个糖果。每人只能给左右两人传递糖果。每人每次传递一个糖果代价为1。

输入输出格式

输入格式:

 

小朋友个数n 下面n行 ai

 

输出格式:

 

求使所有人获得均等糖果的最小代价。

 

输入输出样例

输入样例#1: 复制

4
1
2
5
4

输出样例#1: 复制

4

说明

对于100%的数据 n<=10^6

 

 

题解:

洛谷题解处大佬:

一般的均分纸牌问题就相当于在第N个人与第1个人之间把环断开,此时这N个人站成一行,其持有的纸牌数、前缀和分别是:

A[1] S[1]

A[2] S[2]

A[N] S[N]

如果在第K个人之后把环断开站成一行,这N个人持有的纸牌数、前缀和分别是:

A[k+1] S[k+1]-S[k]

A[k+1] S[k+2]-S[k]

A[N] S[N]-S[k]

A[1] S[1]+S[N]-S[k]

A[k] S[k]+S[N]-S[k]

所以,所需最小花费为:sum(s[i]-s[k])(1<=i<=n)(因为S[n]是0)

当K取何值时上式最小?这就是“货仓选址”问题。所以我们将S数组从小到大排序,取中位数作为S[k]就是最优解。

 

代码:

#include<bits/stdc++.h>
using namespace std;
int n,i;
long long mx,ans,now,a[1000010];
int main(){
	scanf("%d",&n);
	for(i=1;i<=n;i++){
	scanf("%lld",&a[i]);
	mx+=a[i];
}
    mx/=n;
    for(i=1;i<=n;i++)a[i]=a[i-1]+a[i]-mx;
	sort(a+1,a+n+1);
	now=a[(n+1)/2];
	for(i=1;i<=n;i++)ans+=abs(now-a[i]);
	printf("%lld",ans);	
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值