[HAOI2008]糖果传递(洛谷P2512)

【题目描述】

有n个小朋友坐成一圈,每人有ai个糖果。每人只能给左右两人传递糖果。每人每次传递一个糖果代价为1。

【数据范围】

n<=1e6

【分析】

一道看上去很难,分析起来很烦,写起来很水的省选题。

首先可以算出每个人最后的糖果数是总数的平均数,设为ave。

\bigtriangleup _{i}}表示第i个人给第i-1个人的糖果数,而\bigtriangleup _{1}}表示第1个人给第n个人的糖果数(若\bigtriangleup _{i}}<0就是第i-1个人给第i个人的糖果数),则最后的答案就是ans= \sum_{i=1}^{n} \left | \bigtriangleup _{i}] \right |

考虑第1个人,他本来有A _{1}个糖,给了第n个人\bigtriangleup _{1}}个,又由第2个人给了他\bigtriangleup _{2}}个,那么他最后的糖果总数就是A _{1} -\bigtriangleup _{1}+\bigtriangleup _{2}个。同理对于第2个人,他最后的糖果总数就是A _{2} -\bigtriangleup _{2}+\bigtriangleup _{3}个,对于第i个人,他最后的糖果总数就是A _{i} -\bigtriangleup _{i}+\bigtriangleup _{i+1}个。特别的,第n个人最后糖果总数是A _{n} -\bigtriangleup _{n}+\bigtriangleup _{1}个。

另一方面有这n个人最后的糖果总数都是ave,于是我们得到了n个方程。但是第n个方程可以由前n-1个推导出来,所以本质上只有n-1个方程。

不妨考虑用\bigtriangleup _{1}表示\bigtriangleup _{i},设\chi _{i}=A_{i}-ave,由A _{1} -\bigtriangleup _{1}+\bigtriangleup _{2}=ave易得\bigtriangleup _{2}=ave-A _{1} +\bigtriangleup _{1}=\bigtriangleup _{1}-\chi _{1}.。

同理,有\bigtriangleup _{3}=ave-A _{2} +\bigtriangleup _{2}=\bigtriangleup _{1}-\chi _{2}\bigtriangleup _{4}=ave-A _{3} +\bigtriangleup _{3}=\bigtriangleup _{1}-\chi _{3}……

所以当ans取到min的时候,\left | \bigtriangleup _{1} \right |+\left | \bigtriangleup _{1}-\chi _{1} \right |+\left | \bigtriangleup _{1}-\chi _{2} \right |+\left | \bigtriangleup _{1}-\chi _{3} \right |+...+\left | \bigtriangleup _{1}-\chi _{n-1} \right |最小。不难发现此式中\chi _{i}为定值,只有\bigtriangleup _{1}可以改变。考虑其几何意义,上式相当于在x轴给出了n个定点,求一个点使其到这些定点距离之和最小。

这就是一个非常简单的数学问题了。画个图,运用调整思想不难得到\bigtriangleup _{1}取n个定点的中位数时最优。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
#define LL long long
const int N=1000000+5;
LL a[N],b[N],s=0;
int main(){
  int n;
  scanf("%d",&n);
  for (int i=1;i<=n;i++) scanf("%lld",&a[i]),s+=a[i];
  s/=n;
  for (int i=1;i<=n;i++) b[i]=b[i-1]-(a[i]-s);
  sort(b+1,b+1+n);
  s=0;
  for (int i=1;i<=n;i++) s+=abs(b[i]-b[n/2]);
  printf("%lld",s); 
}

 

这道题目还可以使用树状数组或线段树来实现,时间复杂度也为 $\mathcal{O}(n\log n)$。这里给出使用树状数组的实现代码。 解题思路: 1. 读入数据; 2. 将原数列离散化,得到一个新的数列 b; 3. 从右往左依次将 b 数列中的元素插入到树状数组中,并计算逆序对数; 4. 输出逆序对数。 代码实现: ```c++ #include <cstdio> #include <cstdlib> #include <algorithm> const int MAXN = 500005; struct Node { int val, id; bool operator<(const Node& other) const { return val < other.val; } } nodes[MAXN]; int n, a[MAXN], b[MAXN], c[MAXN]; long long ans; inline int lowbit(int x) { return x & (-x); } void update(int x, int val) { for (int i = x; i <= n; i += lowbit(i)) { c[i] += val; } } int query(int x) { int res = 0; for (int i = x; i > 0; i -= lowbit(i)) { res += c[i]; } return res; } int main() { scanf("%d", &n); for (int i = 1; i <= n; ++i) { scanf("%d", &a[i]); nodes[i] = {a[i], i}; } std::sort(nodes + 1, nodes + n + 1); int cnt = 0; for (int i = 1; i <= n; ++i) { if (i == 1 || nodes[i].val != nodes[i - 1].val) { ++cnt; } b[nodes[i].id] = cnt; } for (int i = n; i >= 1; --i) { ans += query(b[i] - 1); update(b[i], 1); } printf("%lld\n", ans); return 0; } ``` 注意事项: - 在对原数列进行离散化时,需要记录每个元素在原数列中的位置,便于后面计算逆序对数; - 设树状数组的大小为 $n$,则树状数组中的下标从 $1$ 到 $n$,而不是从 $0$ 到 $n-1$; - 在计算逆序对数时,需要查询离散化后的数列中比当前元素小的元素个数,即查询 $b_i-1$ 位置上的值; - 在插入元素时,需要将离散化后的数列的元素从右往左依次插入树状数组中,而不是从左往右。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值