火车运输

题目描述

AA 国有 nn 座城市,编号从 11 到 nn ,城市之间有 mm 条双向道路。每一条道路对车辆都有重量限制,简称限重。现在有 qq 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物。

输入输出格式

输入格式:

第一行有两个用一个空格隔开的整数 n,mn,m ,表示 AA 国有 nn 座城市和 mm 条道路。

接下来 mm 行每行 33 个整数 x, y, zx,y,z ,每两个整数之间用一个空格隔开,表示从 xx 号城市到 yy 号城市有一条限重为 zz 的道路。注意: xx 不等于 yy ,两座城市之间可能有多条道路 

接下来一行有一个整数 q,表示有 q 辆货车需要运货。

接下来 q 行,每行两个整数 x、y,之间用一个空格隔开,表示一辆货车需要从 x 城市运输货物到 y 城市,注意:x 不等于 y 

 

输出格式:

共有 q 行,每行一个整数,表示对于每一辆货车,它的最大载重是多少。如果货车不能到达目的地,输出 -1 。

 

输入输出样例

输入样例#1:

4 3
1 2 4
2 3 3
3 1 1
3
1 3
1 4
1 3

输出样例#1:

3
-1
3

题解:

这道题的核心在于在给定的图中求出一个最大生成树。
如何证明在最大生成树中一定包含了这条所求的路径?我们根据Kruskal算法的过程可以很直观地看到
每次我们都选择的是最大的一条边并加入集合,当边构成一棵树时,树中权值最小的边一定是最大的。
那么对于一组(x,y)的询问,我们可以知道答案为x到lca(x,y)和y到lca(x,y)中的最短边
最短边MinEdge同样用倍增处理,i,j表示从i节点向上2^j的祖先途中的最短边
在求lca的过程中同时不断更新Ans就ok了

代码:

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<climits>
#include<vector>
#include<stack>
#include<queue>
#include<cmath>
#define MAXA 100005
#define MOD 99999997 
using namespace std;
typedef long long LL;


struct Rx {
	int u,v,w;
}edge[MAXA];
struct Graph {
	int to,w;
};
vector<Graph> G[MAXA];
int n,m,T,ast[MAXA],Ans,cnt,depth[MAXA],f[MAXA][25],MinEdge[MAXA][25];
bool vis[MAXA];
int Findast(int x) {
	if(ast[x] == x)
	   return x;
	ast[x] = Findast(ast[x]);
	return ast[x];
}
bool cmp(Rx a,Rx b) {
	return a.w > b.w;
}
void Init(int x,int ast,int deep) {
	vis[x] = 1;
	f[x][0] = ast;
	depth[x] = deep;
	for(int i=0;i<G[x].size();i++) {
		int y = G[x][i].to;
		if(!vis[y]) {
			MinEdge[y][0] = G[x][i].w;
			Init(y,x,deep + 1);
		}
	}
}
int main() {
	scanf("%d %d",&n,&m);
	for(int i=1;i<=m;i++)
		scanf("%d %d %d",&edge[i].u,&edge[i].v,&edge[i].w);
	
	sort(edge + 1,edge + m + 1,cmp);	
	for(int i=1;i<=n;i++)
	    ast[i] = i;
	for(int i=1;i<=m;i++) {
		int x = Findast(edge[i].u),y = Findast(edge[i].v);
		if(x != y) {
		   ast[x] = y;
		   Graph temp;
		   temp.to = edge[i].v;
		   temp.w = edge[i].w;
		   G[edge[i].u].push_back(temp);
		   temp.to = edge[i].u;
		   G[edge[i].v].push_back(temp);
		   cnt++;
		}
		if(cnt == n - 1)
		   break;
	}
	for(int i=1;i<=n;i++)
	    if(!vis[i])
	       Init(i,0,1); //可能有多个联通分量 
	for(int j=1;j<=20;j++)
	    for(int i=1;i<=n;i++) {
	    	f[i][j] = f[f[i][j-1]][j-1];
	    	MinEdge[i][j] = min(MinEdge[i][j-1],MinEdge[f[i][j-1]][j-1]);
		}
	scanf("%d",&T);
	while(T--) {
		int x,y;
		scanf("%d %d",&x,&y);
		if(Findast(x) != Findast(y)) {
			printf("-1\n");
			continue;
		}
		Ans = INT_MAX;
		if(depth[x] < depth[y])
		   swap(x,y);
		for(int i=20;i>=0;i--)
		    if(depth[f[x][i]] >= depth[y]) {
		    	Ans = min(Ans,MinEdge[x][i]);
		    	x = f[x][i];
		    }
		if(x == y) {
			printf("%d\n",Ans);
			continue;
		}
		   
		for(int i=20;i>=0;i--)
		    if(f[x][i] != f[y][i]) {
		    	Ans = min(Ans,min(MinEdge[x][i],MinEdge[y][i]));
		    	x = f[x][i];
		    	y = f[y][i];
			}
		Ans = min(Ans,min(MinEdge[x][0],MinEdge[y][0]));
		printf("%d\n",Ans);
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值