题目描述
AA 国有 nn 座城市,编号从 11 到 nn ,城市之间有 mm 条双向道路。每一条道路对车辆都有重量限制,简称限重。现在有 qq 辆货车在运输货物, 司机们想知道每辆车在不超过车辆限重的情况下,最多能运多重的货物。
输入输出格式
输入格式:
第一行有两个用一个空格隔开的整数 n,mn,m ,表示 AA 国有 nn 座城市和 mm 条道路。
接下来 mm 行每行 33 个整数 x, y, zx,y,z ,每两个整数之间用一个空格隔开,表示从 xx 号城市到 yy 号城市有一条限重为 zz 的道路。注意: xx 不等于 yy ,两座城市之间可能有多条道路 。
接下来一行有一个整数 q,表示有 q 辆货车需要运货。
接下来 q 行,每行两个整数 x、y,之间用一个空格隔开,表示一辆货车需要从 x 城市运输货物到 y 城市,注意:x 不等于 y 。
输出格式:
共有 q 行,每行一个整数,表示对于每一辆货车,它的最大载重是多少。如果货车不能到达目的地,输出 -1 。
输入输出样例
输入样例#1:
4 3 1 2 4 2 3 3 3 1 1 3 1 3 1 4 1 3
输出样例#1:
3 -1 3
题解:
这道题的核心在于在给定的图中求出一个最大生成树。
如何证明在最大生成树中一定包含了这条所求的路径?我们根据Kruskal算法的过程可以很直观地看到
每次我们都选择的是最大的一条边并加入集合,当边构成一棵树时,树中权值最小的边一定是最大的。
那么对于一组(x,y)的询问,我们可以知道答案为x到lca(x,y)和y到lca(x,y)中的最短边
最短边MinEdge同样用倍增处理,i,j表示从i节点向上2^j的祖先途中的最短边
在求lca的过程中同时不断更新Ans就ok了
代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<string>
#include<climits>
#include<vector>
#include<stack>
#include<queue>
#include<cmath>
#define MAXA 100005
#define MOD 99999997
using namespace std;
typedef long long LL;
struct Rx {
int u,v,w;
}edge[MAXA];
struct Graph {
int to,w;
};
vector<Graph> G[MAXA];
int n,m,T,ast[MAXA],Ans,cnt,depth[MAXA],f[MAXA][25],MinEdge[MAXA][25];
bool vis[MAXA];
int Findast(int x) {
if(ast[x] == x)
return x;
ast[x] = Findast(ast[x]);
return ast[x];
}
bool cmp(Rx a,Rx b) {
return a.w > b.w;
}
void Init(int x,int ast,int deep) {
vis[x] = 1;
f[x][0] = ast;
depth[x] = deep;
for(int i=0;i<G[x].size();i++) {
int y = G[x][i].to;
if(!vis[y]) {
MinEdge[y][0] = G[x][i].w;
Init(y,x,deep + 1);
}
}
}
int main() {
scanf("%d %d",&n,&m);
for(int i=1;i<=m;i++)
scanf("%d %d %d",&edge[i].u,&edge[i].v,&edge[i].w);
sort(edge + 1,edge + m + 1,cmp);
for(int i=1;i<=n;i++)
ast[i] = i;
for(int i=1;i<=m;i++) {
int x = Findast(edge[i].u),y = Findast(edge[i].v);
if(x != y) {
ast[x] = y;
Graph temp;
temp.to = edge[i].v;
temp.w = edge[i].w;
G[edge[i].u].push_back(temp);
temp.to = edge[i].u;
G[edge[i].v].push_back(temp);
cnt++;
}
if(cnt == n - 1)
break;
}
for(int i=1;i<=n;i++)
if(!vis[i])
Init(i,0,1); //可能有多个联通分量
for(int j=1;j<=20;j++)
for(int i=1;i<=n;i++) {
f[i][j] = f[f[i][j-1]][j-1];
MinEdge[i][j] = min(MinEdge[i][j-1],MinEdge[f[i][j-1]][j-1]);
}
scanf("%d",&T);
while(T--) {
int x,y;
scanf("%d %d",&x,&y);
if(Findast(x) != Findast(y)) {
printf("-1\n");
continue;
}
Ans = INT_MAX;
if(depth[x] < depth[y])
swap(x,y);
for(int i=20;i>=0;i--)
if(depth[f[x][i]] >= depth[y]) {
Ans = min(Ans,MinEdge[x][i]);
x = f[x][i];
}
if(x == y) {
printf("%d\n",Ans);
continue;
}
for(int i=20;i>=0;i--)
if(f[x][i] != f[y][i]) {
Ans = min(Ans,min(MinEdge[x][i],MinEdge[y][i]));
x = f[x][i];
y = f[y][i];
}
Ans = min(Ans,min(MinEdge[x][0],MinEdge[y][0]));
printf("%d\n",Ans);
}
}