题目描述
P老师需要去商店买n支铅笔作为小朋友们参加NOIP的礼物。她发现商店一共有 3种包装的铅笔,不同包装内的铅笔数量有可能不同,价格也有可能不同。为了公平起见,P老师决定只买同一种包装的铅笔。
商店不允许将铅笔的包装拆开,因此P老师可能需要购买超过n支铅笔才够给小朋 友们发礼物。
现在P老师想知道,在商店每种包装的数量都足够的情况下,要买够至少n支铅笔最少需要花费多少钱。
输入格式
第一行包含一个正整数n,表示需要的铅笔数量。
接下来三行,每行用2个正整数描述一种包装的铅笔:其中第1个整数表示这种 包装内铅笔的数量,第2个整数表示这种包装的价格。
保证所有的7个数都是不超过10000的正整数。
输出格式
1个整数,表示P老师最少需要花费的钱。
输入输出样例
输入 #1
57 2 2 50 30 30 27
输出 #1
54
输入 #2
9998 128 233 128 2333 128 666
输出 #2
18407
输入 #3
9999 101 1111 1 9999 1111 9999
输出 #3
89991
说明/提示
铅笔的三种包装分别是:
- 2支装,价格为2;
- 50支装,价格为30;
- 30支装,价格为27。
P老师需要购买至少57支铅笔。
如果她选择购买第一种包装,那么她需要购买29份,共计2 \times 29 = 582×29=58支,需要花费的钱为2 \times 29 = 582×29=58。
实际上,P老师会选择购买第三种包装,这样需要买22份。虽然最后买到的铅笔数 量更多了,为30 \times 2 = 6030×2=60支,但花费却减少为27 \times 2 = 5427×2=54,比第一种少。
对于第二种包装,虽然每支铅笔的价格是最低的,但要够发必须买22份,实际的花费达到了 30 \times 2 = 6030×2=60,因此P老师也不会选择。
所以最后输出的答案是54。
【子任务】
子任务会给出部分测试数据的特点。如果你在解决题目中遇到了困难,可以尝试 只解决一部分测试数据。
每个测试点的数据规模及特点如下表:
上表中“整倍数”的意义为:若为K,表示对应数据所需要的铅笔数量n—定是每种包装铅笔数量的整倍数(这意味着一定可以不用多买铅笔)。
思路:分别考虑购买每一种包装的铅笔所需的最低花费,记录在cost数组中,最后输出最小值即可,注意购买的数量一定要大于等于所需数量才行,所以在非整数倍时需要多买一包铅笔。
#include <string.h>
#include <stdio.h>
#include <memory.h>
int main () {
int a[6],i,j=3,n,cost[3]={0},s,min;
scanf("%d",&n);
for(i=0;i<6;i++)
{
scanf("%d",&a[i]);
}
i=0;
while(j--)
{
if(n%a[i]==0)
s=n/a[i];
else
s=n/a[i]+1;
cost[j]=s*a[i+1];
i+=2;
}
min=cost[0];
for(i=1;i<=2;i++)
if(cost[i]<min)
min=cost[i];
printf("%d",min);
return 0;
}