利用Python爬取小说(附源码)

用30行代码爬取某小说网站上的一篇小说

一、导入模块

import requests
from lxml import etree
import time

二、获取网站的响应信息,并以text打印

url = 'https://www.biquge365.net/newbook/33411/'
head = {
   
    'Referer': 'https://www.biquge365.net/book/33411/',
    'users-agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/112.0.0.0 Safari/537.36 Edg/112.0.1722.39'
}
response = requests.get(url,headers = head,verify 
### 回答1: Python爬取网站数据源码期末作业 近年来,随着信息技术的迅速发展,互联网上的数据量也呈现出爆炸式增长。因此,学习如何使用Python爬取网站数据成为了一项重要的技能。在本期末作业中,我将分享一段用Python编写的爬取网站数据的源码。 首先,我们需要安装Python的相关库和模块,例如beautifulsoup、requests等。在安装完成后,我们可以开始编写源码了。 我们首先需要导入相关的库和模块: ```python import requests from bs4 import BeautifulSoup ``` 接下来,我们定义一个函数来爬取网站数据: ```python def get_data(url): # 发起HTTP请求 response = requests.get(url) # 使用BeautifulSoup解析HTML soup = BeautifulSoup(response.content, 'html.parser') # 进行数据提取等操作 # 例如,我们可以通过选择器选择特定的元素 data = soup.select('.class-name') # 返回获取到的数据 return data ``` 在这个函数中,我们首先使用requests库发起了一个HTTP请求,获取了网站的响应。然后,我们使用BeautifulSoup解析了该网站的HTML内容。接下来,我们可以根据需要使用选择器选择特定的元素,并进行数据的提取。 最后,我们可以调用这个函数来获取数据: ```python data = get_data('http://www.example.com') ``` 在这个例子中,我们调用get_data函数来获取了"http://www.example.com"网站中的数据。 当然,这只是一个简单的例子,实际应用中可能还需要更多的操作和处理。但通过这个简单的例子,我们可以初步了解Python爬取网站数据的一般过程。 希望这个简单的源码示例对你有所帮助,并引发你对Python爬取网站数据的兴趣! ### 回答2: Python爬取网站数据的源码可以通过使用Python爬虫库(例如BeautifulSoup、Scrapy等)来实现。网站数据的爬取主要分为以下几个步骤: 1. 导入所需的库:首先,需要导入所需的库,如requests用于发送HTTP请求,BeautifulSoup用于解析网页等。 2. 发送HTTP请求:使用requests库发送HTTP请求,获取目标网页的源代码。 3. 解析网页:利用BeautifulSoup解析获取到的网页源代码,提取出需要的数据。 4. 数据处理:对提取出的数据进行一些处理,例如清洗、整理等。 5. 存储数据:将处理后的数据存储到本地文件或数据库中,可以使用csv、json等格式。 下面是一个简单的示例源码: ```python import requests from bs4 import BeautifulSoup # 发送HTTP请求获取网页源代码 def get_page(url): try: headers = {'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.3'} response = requests.get(url, headers=headers) if response.status_code == 200: return response.text return None except RequestException: return None # 解析网页,提取数据 def parse_page(html): soup = BeautifulSoup(html, 'html.parser') # 对网页进行解析,提取需要的数据 # ... # 主函数 def main(): url = 'https://example.com' # 目标网页的URL html = get_page(url) if html: data = parse_page(html) # 对获取到的数据进行处理或存储 # ... else: print('请求失败') if __name__ == '__main__': main() ``` 以上示例中的代码仅为实现爬取网站数据的基本骨架,根据具体需求和网页结构,需要进行相应的修改和扩展。 ### 回答3: Python爬虫是一种自动化获取网站数据的技术,能够帮助我们快速爬取所需数据,提高工作效率。下面是一个简单的爬取网站数据的Python代码示例: ```python import requests from bs4 import BeautifulSoup # 定义需要爬取的网站URL url = 'https://www.example.com/' # 发起网络请求,获取网页内容 response = requests.get(url) # 使用BeautifulSoup解析网页内容 soup = BeautifulSoup(response.text, 'html.parser') # 提取所需数据 data = soup.find('div', class_='data-container').text # 打印爬取的数据 print(data) ``` 上述代码通过使用requests库发起网络请求,获取网页内容,然后使用BeautifulSoup库解析网页内容。通过指定需要提取数据的标签和类名,可以使用`.find()`方法定位到具体的数据。最后,将爬取到的数据打印出来。 当然,实际的网站页面结构可能更加复杂,需要根据实际情况进行相应的调整。在爬取网站数据时,也需要了解相关的法律法规并遵守网站的使用规则,以确保合法合规。
评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员微凉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值