KaTeX 数学符号列表

KaTeX 是一个快速,易于使用的JavaScript库,用于在Web上进行TeX数学渲染。
KaTeX兼容所有主流浏览器,包括Chrome,Safari,Firefox,Opera,Edge和IE 9-11。
KaTeX支持很多(但不是全部)LaTeX语法和许多LaTeX软件包。

字母符号

A \Alpha A \Alpha α \alpha α \alpha T \Tau T \Tau τ \tau τ \tau
B \Beta B \Beta β \beta β \beta Υ \Upsilon Υ \Upsilon υ \upsilon υ \upsilon
Γ \Gamma Γ \Gamma γ \gamma γ \gamma Φ \Phi Φ \Phi ϕ \phi ϕ \phi
Δ \Delta Δ \Delta δ \delta δ \delta X \Chi X \Chi χ \chi χ \chi
E \Epsilon E \Epsilon ϵ \epsilon ϵ \epsilon Ψ \Psi Ψ \Psi ψ \psi ψ \psi
Z \Zeta Z \Zeta ζ \zeta ζ \zeta Ω \Omega Ω \Omega ω \omega ω \omega
H \Eta H \Eta η \eta η \eta Π \varPi Π \varPi ϖ \varpi ϖ \varpi
Θ \Theta Θ \Theta θ \theta θ \theta Σ \varSigma Σ \varSigma ς \varsigma ς \varsigma
I \Iota I \Iota ι \iota ι \iota Θ \varTheta Θ \varTheta ϑ \vartheta ϑ \vartheta
K \Kappa K \Kappa κ \kappa κ \kappa Φ \varPhi Φ \varPhi φ \varphi φ \varphi
Λ \Lambda Λ \Lambda λ \lambda λ \lambda Γ \varGamma Γ \varGamma ε \varepsilon ε \varepsilon
M \Mu M \Mu μ \mu μ \mu Δ \varDelta Δ \varDelta ϰ \varkappa ϰ \varkappa
N \Nu N \Nu ν \nu ν \nu Λ \varLambda Λ \varLambda ϑ \thetasym ϑ \thetasym
Ξ \Xi Ξ \Xi ξ \xi ξ \xi Ξ \varXi Ξ \varXi ϱ \varrho ϱ \varrho
O \Omicron O \Omicron ο \omicron ο \omicron Υ \varUpsilon Υ \varUpsilon ϝ \digamma ϝ \digamma
Π \Pi Π \Pi π \pi π \pi Ψ \varPsi Ψ \varPsi ı \imath ı \imath
P \Rho P \Rho ρ \rho ρ \rho Ω \varOmega Ω \varOmega ȷ \jmath ȷ \jmath
Σ \Sigma Σ \Sigma σ \sigma σ \sigma ℧ \mho \mho ℓ \ell \ell
℘ \wp \wp;\weierp ℵ \aleph \aleph ⅁ \Game \Game k \Bbbk k \Bbbk
ℵ \alef \alef Ⅎ \Finv \Finv A ˚ \text{\AA} A˚ \text{\AA} a ˚ \text{\aa} a˚ \text{\aa}
ℶ \beth \beth ℷ \gimel \gimel ℸ \daleth \daleth ð \eth ð \eth
ℏ \hbar \hbar ℏ \hslash \hslash Æ \text{\AE} Æ \text{\AE} œ \text{\oe} œ \text{\oe}
常用标记定义Latex
a ˘ \breve{a} a˘\breve{a}
a ˇ ; a c ˇ \check{a};\widecheck{ac} aˇ;ac \check{a};\widecheck{ac}
a ~ ; a c ~ ; A B ~ \tilde{a};\widetilde{ac};\utilde{AB} a~;ac ; AB波浪\tilde{a};\widetilde{ac};\utilde{AB}
a ˊ \acute{a} aˊ\acute{a}
a ˋ \grave{a} aˋ\grave{a}
a n a_n an下标a_n
a ^ \hat a a^帽子\hat a
a ˉ \bar a aˉ短线\bar a

运算符

二元运算定义Latex
= = =等于=
≈ \approx 约等于\approx
∝ \propto 正比于\propto
+ + ++
− - -
± ; ∓ \pm; \mp ±;\pm; \mp
× \times ×\times
⋅ \cdot 点乘\cdot; \centerdot
∗ * *;\ast
÷ ; / \div; / ÷;/\div; /
< < <小于<;\lt
> > >大于>;\gt
≪ ; ⋘ \ll;\lll ;远小于\ll\lll
≫ ; ⋙ \gg;\ggg ;远大于\gg;\ggg
⩾ ; ≥ \geqslant;\ge ;大于等于\geqslant\ge
⩽ ; ≤ \leqslant;\le ;小于等于\leqslant;\le
≠ ; ∉ \not=;\not\in =;前方加\not否定\not=;\not\in
b a \dfrac{b}{a} ab分数\frac{b}{a}; \dfrac{b}{a}
a 1 + 1 b \cfrac{a}{1 + \cfrac{1}{b}} 1+b1a复合分式\cfrac{a}{1 + \cfrac{1}{b}}
f ∘ g f \circ g fg复合函数f \circ g
一元运算定义Latex示例
∣ a ∣ \mid a \mid a绝对值\vert; \mid; |;\vert; \rvert
∥ a ∥ \|a\| a范数,模\Vert; \|; \lVert\ ;rVert
⌈ a ⌉ \lceil a\rceil aceiling\lceil a\rceil
⌊ a ⌋ \lfloor a\rfloor afloor\lfloor a\rfloor⌊2.1⌋ = 2
⌊ a ⌉ \lfloor a\rceil a最接近的整数\lfloor a\rceil⌊2.6⌉ = 3
a n a^n an指数a^n
x ; x n \sqrt{x}; \sqrt[n]{x} x ;nx 开方\sqrt{x}; \sqrt[n]{x}
a ˉ ; a + b i ‾ \bar{a};\overline{a+bi} aˉ;a+bi共轭\bar{a}; \overline{a+bi}
⎰ ⎱ \lmoustache\rmoustache 胡须\lmoustache\rmoustache
┌ ┐ \ulcorner \urcorner \ulcorner\urcorner
└ ┘ \llcorner\lrcorner \llcorner\lrcorner
↑ ; ↓ ; ↕ \uparrow;\downarrow;\updownarrow ;;\uparrow;\downarrow;\updownarrow
⇑ ; ⇓ ; ⇕ \Uparrow;\Downarrow;\Updownarrow ;;\uparrow;\downarrow;\updownarrow
多元运算定义Latex示例
∑ \sum 求和\sum
∏ \prod 求积\prod
⋂ \bigcap 交集\bigcap
⋃ \bigcup 并集\bigcup
⨿ \amalg ⨿合并\amalg

括号

\left(\LARGE{AB}\right)
( A B ) \left(\LARGE{AB}\right) (AB)

( \big( \Big( \bigg( \Bigg(
( ( ( ( ( ( \big( \Big( \bigg( \Bigg( (((((

逻辑符号

符号定义Latex示例
∵ \because 因为\because
∴ \therefore 所以\therefore
¬ ; ∼ \lnot; \sim ¬;逻辑非\neg; \lnot; \sim ¬ ( ¬ A )    ⟺    A \lnot(\lnot A)\iff A ¬(¬A)A
∧ \land 逻辑与\landn < 4 ∧ n > 2 ⇔ n = 3 when n is a natural number.
∨ \lor 逻辑或\lorn ≥ 4 ∨ n ≤ 2 ⇔ n ≠ 3 when n is a natural number.
⊕ ; ⊻ \oplus; \veebar ;异或\oplus; \veebar a ⊕ b = ( ¬ a ∧ b ) ∨ ( a ∧ ¬ b ) a\oplus b=(\lnot a\land b)\lor(a\land \lnot b) ab=(¬ab)(a¬b)
   ⟺    ; ↔ \iff; \leftrightarrow ;等价,当且仅当(if and only if)\iff; \leftrightarrow
⇒ ; → \Rarr; \rarr ;条件运算,if … then\Rarr; \rarr ;\to x = 6 ⇒ x 2 = 36 x=6\Rightarrow x^2=36 x=6x2=36
   ⟹    ;    ⟸    \implies; \impliedby ;\implies; \impliedby
⇐ ; ← \Larr; \larr ;左箭头\Larr; \larr; \gets
: = := :=定义:=
≜ \triangleq 定义\triangleq
∀ \forall 任意\forall∀ n ∈ ℕ, n2 ≥ n
∃ \exists 存在\exists∃ n ∈ ℕ: n is even
∃ ! \exists! !唯一存在\exists!∃! n ∈ ℕ: n + 5 = 2n.
⊨ \vDash 满足符\vDash A ⊨ B A\vDash B AB
⊢ \vdash 推断出\vdashA → B ⊢ ¬B → ¬A
□ \square 拟态词必然\square
◊ \Diamond 拟态词可能\Diamond
堆叠定义Latex
= ! \stackrel{!}{=} =!堆叠\stackrel{!}{=}
= ! \overset{!}{=} =!上方\overset{!}{=}
= ! \underset{!}{=} !=下方\underset{!}{=}
a b a \atop b baa \atop b
a b c a\raisebox{0.25em}{b}c abca\raisebox{0.25em}{b}c

注释

符号定义Latex
§ \text{\sect} §分节\text{\sect}
⋆ \star 星号\star
5 \cancel{5} 5 左划线\cancel{5}
5 \bcancel{5} 5 右划线\bcancel{5}
a b c \xcancel{abc} abc 交叉划线\xcancel{5}
5 \sout{5} 5划线sout{5}
π = c d \boxed{\pi=\frac c d} π=dc方框\boxed{\pi=\frac c d}
a + b + c ⏞ note \overbrace{a+b+c}^{\text{note}} a+b+c note上备注\overbrace{a+b+c}^{\text{note}}
a + b + c ⏟ note \underbrace{a+b+c}_{\text{note}} note a+b+c下备注\underbrace{a+b+c}_{\text{note}}

\tag{hi} x+y^{2x}
x + y 2 x (hi) x+y^{2x} \tag{hi} x+y2x(hi)

\tag*{hi} x+y^{2x}
x + y 2 x hi x+y^{2x}\tag*{hi} x+y2xhi

\left.\begin{bmatrix}a & b \\ c & d\end{bmatrix}\right\}rows
[ a b c d ] } 2 rows \left.\begin{bmatrix}a & b \\ c & d\end{bmatrix}\right\}\text{2 rows} [acbd]}2 rows

集合和映射

符号定义Latex
{ x ∣ x < 5 } \{x\mid x<5\} {xx<5}集合\{x\mid x<5\}
KaTeX parse error: Undefined control sequence: \set at position 1: \̲s̲e̲t̲{x\mid x<5}集合\set{x\mid x<5}
U ˚ \mathring{U} U˚邻域\mathring{U}
⊎ \uplus 多重集\uplus
⊂ \subset 真子集\subset
⊆ \subseteq 子集\subseteq
⊃ \supset 真父集\supset
⊇ \supseteq 父集\supseteq
∈ \in 属于\in
∋ \ni 属于\ni
∩ \cap 交集\cap
∪ \cup 并集\cup
∖ \setminus 差集\setminus
c a r d ( A ) \mathrm{card}(A) card(A)元素个数\mathrm{card}(A)
∅ ; ∅ \emptyset; \varnothing ;空集\emptyset; \varnothing
N \N N自然数\N
Z \Z Z整数\Z
R ; ℜ \R;\Re R;实数\R;\Reals;\Re
ℑ \Im 虚数\Im; \Image
C \Complex C复数\Complex
n ! n! n!阶乘n!
( n k ) \binom{n}{k} (kn), [ n k ] {n\brack k} [kn]组合\binom{n}{k}; \dbinom{n}{k};
{n \choose k}; n\brack k
{ n k } {n\brace k} {kn}{n\brace k}
A n k A^k_n Ank排列A^n_m
∁ n k \complement^k_n nk组合\complement^n_m

几何

符号定义Latex
∽ \backsim 相似三角形\backsim
⋍ \backsimeq \backsimeq
= ∽ \overset{\backsim}{=} =全等三角形\overset{\backsim}{=}
∥ \parallel 平行\parallel
∦ \nparallel 不平行\nparallel
⊥ \bot 垂直\bot
A B ‾ \overline{AB} AB直线\overline{AB}
A B ‾ \underline{AB} AB\underline{AB}
A B undefined \overlinesegment{AB} AB 线段\overlinesegment{AB}
A B ⏠ ; A B ⏡ \overgroup{AB};\undergroup{AB} AB ; AB\overgroup{AB};\undergroup{AB}
A B undefined \underlinesegment{AB} AB\underlinesegment{AB}
A B ⌢ \overset{\frown}{AB} AB\overset{\frown}{AB}
⊙ \odot \odot
◯ \bigcirc \bigcirc
⊡ \boxdot \boxdot
□ \square 矩形\square
R t △ \mathrm{Rt}\triangle Rt直角三角形\mathrm{Rt}\triangle
◊ \Diamond 菱形\Diamond
∠ \angle \angle
∡ \measuredangle \measuredangle
90 ° 90\degree 90°角度90\degree
ı ^ \hat{\imath} ı^坐标基\hat{\imath}
ȷ ^ \hat{\jmath} ȷ^坐标基\hat{\jmath}
a c ^ \widehat{ac} ac 向量夹角\widehat{ac}
a ⃗ , A B → ; a c ⇀ \vec{a},\overrightarrow{AB};\overrightharpoon{ac} a ,AB ;ac 向量\vec{a},\overrightarrow{AB};
\overrightharpoon{ac}
A B → \underrightarrow{AB} AB\underrightarrow{AB}
A B ← ; a c ↼ ; A B ← \overleftarrow{AB};\overleftharpoon{ac};\underleftarrow{AB} AB ;ac ; AB\overleftarrow{AB};
\overleftharpoon{ac};
\underleftarrow{AB}
A B ⇒ \Overrightarrow{AB} AB \Overrightarrow{AB}

函数

arcsin ⁡ \arcsin arcsin \arcsin cotg ⁡ \cotg cotg \cotg ln ⁡ \ln ln \ln det ⁡ \det det \det
arccos ⁡ \arccos arccos \arccos coth ⁡ \coth coth \coth log ⁡ \log log \log gcd ⁡ \gcd gcd \gcd
arctan ⁡ \arctan arctan \arctan csc ⁡ \csc csc \csc sec ⁡ \sec sec \sec inf ⁡ \inf inf \inf
arctg ⁡ \arctg arctg \arctg ctg ⁡ \ctg ctg \ctg sin ⁡ \sin sin \sin lim ⁡ \lim lim \lim
arcctg ⁡ \arcctg arcctg \arcctg cth ⁡ \cth cth \cth sinh ⁡ \sinh sinh \sinh lim inf ⁡ \liminf liminf \liminf
arg ⁡ \arg arg \arg deg ⁡ \deg deg \deg sh ⁡ \sh sh \sh lim sup ⁡ \limsup limsup \limsup
ch ⁡ \ch ch \ch dim ⁡ \dim dim \dim tan ⁡ \tan tan \tan max ⁡ \max max \max
cos ⁡ \cos cos \cos exp ⁡ \exp exp \exp tanh ⁡ \tanh tanh \tanh min ⁡ \min min \min
cosec ⁡ \cosec cosec \cosec hom ⁡ \hom hom \hom tg ⁡ \tg tg \tg Pr ⁡ \Pr Pr \Pr
cosh ⁡ \cosh cosh \cosh ker ⁡ \ker ker \ker th ⁡ \th th \th sup ⁡ \sup sup \sup
cot ⁡ \cot cot \cot lg ⁡ \lg lg \lg f ⁡ \operatorname{f} f \operatorname{f} arg ⁡ max ⁡ \arg\max argmax \arg\max
arg ⁡ min ⁡ \arg\min argmin \arg\min

微积分

符号定义Latex
→ \to 趋向于\to
← \gets \gets
∞ \infty 无穷大\infty
lim ⁡ x → 0 \lim\limits_{x\to 0} x0lim极限\lim\limits_{x\to 0}
x ˙ \dot{x} x˙导数\dot{x}
x ¨ \ddot{x} x¨二阶导\ddot{x}
x ′ x' x导数x’; x^\prime
x ′ ′ x'' x二阶导x’’
x ( n ) x^{(n)} x(n)n阶导x^{(n)}
∂ x \partial x x偏导数\partial x
d x \mathrm{d}x dx微分\mathrm{d}x
∫ \int 积分\int
∬ \iint 积分\iint
∭ \iiint 积分\iiint
∮ \oint 积分\oint
∯ \oiint 积分\oiint
∰ \oiiint 积分\oiiint
∇ \nabla 微分算子\nabla
Δ \Delta Δ拉普拉斯算子\Delta
□ \Box 非欧几里得拉普拉斯算子\Box
\iiint\limits_{Ω}(\dfrac{∂P}{∂x}+\dfrac{∂Q}{∂y}+\dfrac{∂R}{∂z})\mathrm{d}V=
\oiint\limits_{Σ}P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}x\mathrm{d}z+R\mathrm{d}x\mathrm{d}y

∭ Ω ( ∂ P ∂ x + ∂ Q ∂ y + ∂ R ∂ z ) d V = ∯ Σ P d y d z + Q d x d z + R d x d y \iiint\limits_{Ω}(\dfrac{∂P}{∂x}+\dfrac{∂Q}{∂y}+\dfrac{∂R}{∂z})\mathrm{d}V=\oiint\limits_{Σ}P\mathrm{d}y\mathrm{d}z+Q\mathrm{d}x\mathrm{d}z+R\mathrm{d}x\mathrm{d}y Ω(xP+yQ+zR)dV=Σ Pdydz+Qdxdz+Rdxdy

线性代数

表示定义Latex
a \mathbf{a} a向量(粗体)\mathbf{a}
A A A矩阵(大写)A
T ↔ \overleftrightarrow{T} T 张量\overleftrightarrow{T}
A B ↔ \underleftrightarrow{AB} AB\underleftrightarrow{AB}
T \mathcal{T} T张量(花体)\mathcal{T}
f ( x ) = { a if  b c if  d f(x)=\begin{cases} a &\text{if } b \\ c &\text{if } d \end{cases} f(x)={acif bif d定义方程f(x)=\begin{cases}
a &\text{if } b \\
c &\text{if } d
\end{cases}
10 x + 3 y = 2 3 x + 13 y = 4 \begin{alignedat}{2} 10&x+ &3&y = 2 \\ 3&x+&13&y = 4 \end{alignedat} 103x+x+313y=2y=4方程组\begin{alignedat}{2}
10&x+ &3&y = 2 \\
3&x+&13&y = 4
\end{alignedat}
f ( x ) = ( m + n ) 2 = m 2 + 2 m + n 2 \begin{aligned} f(x) &=(m+n)^2 \\ & =m^2+2m+n^2 \end{aligned} f(x)=(m+n)2=m2+2m+n2多行等式\begin{aligned}
f(x) &=(m+n)^2 \\
& =m^2+2m+n^2
\end{aligned}
a b c d \begin{matrix} a & b \\ c & d\end{matrix} acbd数组\begin{matrix}
a & b \\
c & d
\end{matrix}
a b c d \begin{array}{cc} a & b \\ c & d\end{array} acbd数组\begin{array}{cc}
a & b \\
c & d
\end{array}
( a b c d ) \begin{pmatrix} a & b \\ c & d\end{pmatrix} (acbd)矩阵\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}
[ a b c d ] \begin{bmatrix} a & b \\ c & d\end{bmatrix} [acbd]矩阵\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
∣ a b c d ∣ \begin{vmatrix} a & b \\ c & d\end{vmatrix} acbd行列式\begin{vmatrix}
a & b \\
c & d
\end{vmatrix}
∥ a b c d ∥ \begin{Vmatrix} a & b \\ c & d\end{Vmatrix} acbd范式\begin{Vmatrix}
a & b \\
c & d
\end{Vmatrix}
{ a b c d } \begin{Bmatrix}a & b \\ c & d\end{Bmatrix} {acbd}花括号\begin{Bmatrix}
a & b \\
c & d
\end{Bmatrix}
[ a b c d e f g h i ] \begin{bmatrix} \begin{array}{c:c:c} a & b & c \\ \hline d & e & f \\ \hdashline g & h & i\end{array}\end{bmatrix} adgbehcfi分块矩阵\begin{bmatrix}
\begin{array}{c:c:c}
a & b & c \\
\hline
d & e & f \\
\hdashline
g & h & i
\end{array}
\end{bmatrix}
→ u n d e r o v e r \xrightarrow[under]{over} over under变换\xrightarrow[under]{over}
→ \to 变换\to
A ⊤ A^\top A矩阵转置A^\top
A ≅ B A\cong B AB矩阵等价A\cong B
A ∼ B A\sim B AB矩阵相似A\sim B
A ≃ B A\simeq B AB矩阵合同A\simeq B
A ˉ \bar{A} Aˉ增广矩阵\bar{A}
A ∗ A^* A伴随矩阵A^*
det ⁡ A ; ∣ A ∣ \det A;\vert A \vert detA;A矩阵的行列式\det A
d i a g ( a 1 , a 2 , a 3 ) \mathrm{diag}(a_1,a_2,a_3) diag(a1,a2,a3)对角阵\mathrm{diag}(a_1,a_2,a_3)
A ⊗ B A\otimes B AB克罗内克积\otimes
⋯ \cdots 横点\cdots
⋮ \vdots 竖点\vdots
⋱ \ddots 对角点\ddots
⟨ ψ ∣ ϕ ⟩ \lang\psi\mid\phi\rang ψϕ左矢;右矢\lang\psi\mid\phi\rang
KaTeX parse error: Undefined control sequence: \bra at position 1: \̲b̲r̲a̲{\phi}左矢\bra{\phi}; \Bra{\phi}
KaTeX parse error: Undefined control sequence: \ket at position 1: \̲k̲e̲t̲{\psi}右矢\ket{\psi}; \Ket{\psi}
KaTeX parse error: Undefined control sequence: \braket at position 1: \̲b̲r̲a̲k̲e̲t̲{\phi\mid\psi}狄拉克符号\braket{\phi\mid\psi}
\begin{pmatrix}
a_{11}&a_{12}&\cdots&a_{1n} \\
a_{21}&a_{22}&\cdots&a_{2n} \\
\vdots&\vdots&\ddots&\vdots \\
a_{m1}&a_{m2}&\cdots&a_{mn} \\
\end{pmatrix},

\begin{bmatrix} 
\begin{array}{cc:c} 
1&0 & 0 & 0 \\ 
0&1 & 0 &0 \\ 
\hdashline 
0&0 & 1 & 5
\end{array}
\end{bmatrix}

( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ) , [ 1 0 0 0 0 1 0 0 0 0 1 5 ] \begin{pmatrix} a_{11}&a_{12}&\cdots&a_{1n} \\ a_{21}&a_{22}&\cdots&a_{2n} \\ \vdots&\vdots&\ddots&\vdots \\ a_{m1}&a_{m2}&\cdots&a_{mn} \\ \end{pmatrix}, \quad \begin{bmatrix} \begin{array}{cc:c} 1&0 & 0 & 0 \\ 0&1 & 0 &0 \\ \hdashline 0&0 & 1 & 5 \end{array} \end{bmatrix} a11a21am1a12a22am2a1na2namn,100010001005

现代数学

符号定义Latex示例
g ∘ f g \circ f gf复合g \circ f
b ( m o d m ) b\pmod m b(modm)b\pmod m
a   m o d   b a \bmod b amodba \bmod b
x ( a ) x \pod a x(a)x \pod a
≡ \equiv 同余关系\equiv a ≡ b ( m o d m ) a\equiv b\pmod m ab(modm)
⋗ \gtrdot \gtrdot
⋖ \lessdot \lessdot
⊺ \intercal 区间\intercal
⊳ \rhd 双方关系对立\rhd R ⊳ S = R − R ⋉ S R\rhd S=R-R\ltimes S RS=RRS
⊲ \lhd 正规子群\lhd Z ( G ) ⊲ G Z(G) \lhd G Z(G)G
⊵ \unrhd \unrhd
⊴ \unlhd \unlhd
⋋ \leftthreetimes \leftthreetimes
⋌ \rightthreetimes \rightthreetimes
⋊ \rtimes \rtimes
⋉ \ltimes \ltimes
≺ \prec 卡普可约\precIf L1 ≺ L2 and L2 ∈ P,
then L1 ∈ P
≻ \succ \succ
∣ \mid 因式分解\midSince 15 = 3 × 5,
it is true that 3 | 15 and 5 | 15
∤ \nmid \nmid
  • 26
    点赞
  • 104
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值