NumPy可以做什么?

这篇博客详细介绍了NumPy库在Python中的应用,包括数组生成、属性获取、多维操作、数学函数等核心功能。内容涵盖数组生成方法如arange、ones、zeros等,以及转置、数据类型、维度和形状等属性。还讨论了重设形状、展开、轴移动、转置等基本操作,以及数学函数如三角函数、双曲函数、数值修约等。此外,还介绍了数组的连接、堆叠、拆分、删除、插入、附加等高级操作,以及随机数生成和数学函数的使用,是深入理解NumPy的宝贵资源。
摘要由CSDN通过智能技术生成

NumPy数组生成

  1. 使用numpy.array将列表或元组转换为ndarray数组
    numpy.array(object, dtype=None, copy=True, order=None, subok=False, ndmin=0)
    
  2. 使用numpy.arange()方法创建。arange() 的功能是在给定区间内创建一系列均匀间隔的值
    numpy.arange(start, stop, step, dtype=None)
    
  3. 使用numpy.linspace()方法创建数值有规律的数组。linspace 用于在指定的区间内返回间隔均匀的值
    numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)
    
  4. 使用numpy.ones()方法创建数值全部为1的多维数组
    numpy.ones(shape, dtype=None, order='C')
    
  5. 使用numpy.zeros()方法创建数值全部为0的多维数组
    numpy.zeros(shape, dtype=None, order='C')
    
  6. 使用numpy.eye()方法创建二维数组,其特点是k 对角线上的值为 1,其余值全部为0
    numpy.eye(N, M=None, k=0, dtype=<type 'float'>)
    
  7. 从已知数据文件、函数中创建 ndarray。NumPy 提供了下面 5 个方法:
    • frombuffer(buffer):将缓冲区转换为 1 维数组。
    • fromfile(file,dtype,count,sep):从文本或二进制文件中构建多维数组。
    • fromfunction(function,shape):通过函数返回值来创建多维数组。
    • fromiter(iterable,dtype,count)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值