贝叶斯分类器《自制》

自己跟着概念敲的,可能有点丑,见谅

import java.util.ArrayList;
import java.util.List;
import java.util.HashMap;
import java.util.Map;

public class train {
double[] P1,P2,Pc;
//每个分类用例个数
Map<String,Integer> typeAndNum=new HashMap<>();
//List test=new ArrayList<>();
//先验概率
Map<String,Double> prior=new HashMap<>();
//分类
List c=new ArrayList<>();
//特征1概率分布
Map<String,Map<String,Double>> condition1=new HashMap<>();
//特征2概率分布
Map<String,Map<String,Double>> condition2=new HashMap<>();
//训练模型
public void startTrain(String[] y,String[] x1,String[] x2)
{
prior=prior(y);
condition1=condition(x1,y);
condition2=condition(x2,y);
//System.out.print(condition1);
}
//对输入数据分类
public String testData(String x2,String x1){
try {
double[] problist=new double[c.size()];
double maxProb;
String clazz="";
for (int i=0;i<c.size();i++)
{
problist[i]=prior.get(c.get(i))*condition1.get(x1).get(c.get(i))*condition2.get(x2).get(c.get(i));
}
maxProb=problist[0];
for (int i=0;i<c.size();i++)
{
if (problist[i]>=maxProb)
{
maxProb=problist[i];
clazz=c.get(i);
}
}
return clazz;
}catch (Exception e)
{
System.out.print(“请规范输入数据”);
}
return “”;
}
//计算先验概率
public Map<String,Double> prior(String[] data)
{
int num;
int present;
int sum=data.length;
Map<String,Double> prob=new HashMap<>();

List<String> type=new ArrayList<>();
typeAndNum.put(data[0],0);
type.add(data[0]);
for(int i=0;i<data.length;i++)
{
  for(int j=0;j<type.size();j++)
  {
    if (data[i].equals(type.get(j)))
    {
      present=typeAndNum.get(data[i]);
      typeAndNum.put(data[i],++present);
      break;
    }
    else if (j==type.size()-1)
    {
      type.add(data[i]);
      typeAndNum.put(data[i],1);
      break;
    }
  }
}
for (String t:type)
{
  num=typeAndNum.get(t);
  prob.put(t,(double)num/sum);
}
c=type;
return prob;

}
//统计类别
public List classData(String[] data)
{
List type=new ArrayList<>();
type.add(data[0]);
for (int i=1;i<data.length;i++)
{
for (int j=0;j<type.size();j++)
{
if (data[i].equals(type.get(j)))
break;
else if (jtype.size()-1)
{
type.add(data[i]);
}
}
}
return type;
}
//计算概率分布
public Map<String,Map<String,Double>> condition(String[] datax,String[] datac)
{
int present=0;
Map<String,Map<String,Double>> prob=new HashMap<String, Map<String, Double>>();
List type=classData(datax);
for(int i=0;i<type.size();i++)
{
Map<String,Double> hprob=new HashMap<>();
for (int j=0;j<c.size();j++)
{
for (int k=0;k<datax.length;k++)
{
if (datax[k].equals(type.get(i))&&datac[k].equals(c.get(j)))
{
present+=1;
}
if (k
datax.length-1)
{

        hprob.put(c.get(j),(double)present/typeAndNum.get(c.get(j)));
        present=0;
        prob.put(type.get(i),hprob);
      }
    }
  }
}
return prob;

}

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值