1.KafkaSink
使用kafkaSink首先需要添加依赖
<dependency>
<groupId>org.apache.flink</groupId>
<artifactId>flink-connector-kafka_2.12</artifactId>
<version>1.13.1</version>
</dependency>
<dependency>
<groupId>com.alibaba</groupId>
<artifactId>fastjson</artifactId>
<version>1.2.75</version>
</dependency>
最重要的就是创建一个Flink程序用的生产者
FlinkKafkaProducer<String> kafkaProducer = new FlinkKafkaProducer<>("hadoop102:9092", "first", new SimpleStringSchema());
其中String泛型代表你写入到kafka的数据类型
package net.cyan.Sink;
import com.alibaba.fastjson.JSON;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.SimpleTimerService;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
public class Demo1_kafkaSink {
public static void main(String[] args) {
//创建执行环境
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
//创建FlinkKafkaProducer
FlinkKafkaProducer<String> kafkaProducer = new FlinkKafkaProducer<>("hadoop102:9092", "first", new SimpleStringSchema());
env.socketTextStream("hadoop103",9999)
//map处理数据
.map(new MapFunction<String, String>() {
@Override
public String map(String s) throws Exception {
//切割数据集
String[] split = s.split(",");
//转换
return JSON.toJSONString(split[0].concat(split[1]).concat(split[2]));
}
})
//添加
.addSink(kafkaProducer);
try {
//启动执行环境
env.execute();
} catch (Exception e) {
e.printStackTrace();
}
}
}
当你写入到kafka的数据类型为String时,基本没问题。当你使用自定义POJO(等同于Bean)来封装你写入的数据时,那么上述producer方法中的默认序列化器就不能序列化了,那么我们就需要使用它的重载方法
2.自定义MySqlSink
自定义一个Sink,向mysql写入数据
第一步,导入依赖
<