深度学习、神经网络
少奶奶的猪
python开发,web开发,odoo开发,前端开发,数据库,机器学习
展开
-
Dropout原理解析
1. Dropout简介1.1 Dropout出现的原因在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象。在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高;但是在测试数据上损失函数比较大,预测准确率较低。过拟合是很多机器学习的通病。如果模型过拟合,那么得到的模型几乎不能用。为了解决过拟合问...原创 2020-04-14 11:26:15 · 1413 阅读 · 0 评论 -
自动编码器(AE、SDA、SDAE)的理解
自动编码器(Auto-Encoder,AE)自编码器(autoencoder)是神经网络的一种,经过训练后能尝试将输入复制到输出。自编码器内部有一个隐藏层 h,可以产生编码(code)表示输入。该网络可以看作由两部分组成:一个由函数 h=f(x)h = f(x)h=f(x) 表示的编码器和一个生成重构的解码器 r=g(h)r = g(h)r=g(h)。我们不应该将自编码器设计成输入到输出完全相等...原创 2020-04-12 12:05:51 · 6489 阅读 · 0 评论 -
堆叠式降噪自动编码器(SDA)
1.1 自动编码器(AutoEncoder,AE)自动编码器(AutoEncoder,AE)就是一种尽可能复现输入信号的神经网络,其输出向量与输入向量同维,常按照输入向量的某种形式,通过隐层学习一个数据的表示或对原始数据进行有效编码。值得注意的是,这种自编码器是一种不利用类标签的非线性特征提取方法, 就方法本身而言, 这种特征提取的目的在于保留和获得更好的信息表示, 而不是执行分类任务,尽管有时...原创 2020-04-12 11:59:04 · 2757 阅读 · 0 评论 -
MLP RBF RBM DBN DBM CNN 整理学习
开篇语文章整理自向世明老师的PPT,围绕神经网络发展历史,前馈网络(单层感知器,多层感知器,径向基函数网络RBF),反馈网络(Hopfield网络,联想存储网络,SOM,Boltzman及受限的玻尔兹曼机RBM,DBN,CNN)三部分进行讲述,给人一个神经网络的整体认识。发展历史单层感知器基本模型如下训练如果激励函数是线性的话,可用最小二乘直接计算:如果激励函数是sifm...原创 2020-04-12 11:02:32 · 1222 阅读 · 0 评论