题意
n n n 个点, m m m 条边的有向图,现可以往上添加 k k k 条边,使得新图最小拓扑序最大,此处的大与小均指序列的字典序。 ( 1 ≤ n ≤ 100000 , 0 ≤ m , k ≤ 100000 ) (1\leq n\leq 100000,0\leq m,k\leq 100000) (1≤n≤100000,0≤m,k≤100000)
思路
比赛的时候看到这道题,想的就是贪心。对于此类题目,一个很明显的思路就是从开头到末尾,依次贪心,即让第一个位置字典序最大,再让第二个最大,依次往下。
因此不难想到,对于某一拓扑层来说,我们需要对该层中最小节点加边,使其在拓扑序之后的位置中出现。想到这一步之后,就陷入了卡顿,因为不知道应该选哪个节点向最小的节点连边。
看了其他人的做法之后,发现可以用一个最大堆存储这些暂时不知道如何连边的节点,在之后无法再继续拓扑的时候,再从中选一个节点出来连边。连边的时候直接从当前拓扑序末尾节点连向该节点即可。
于是问题变成什么样的点我们不需要对其连边。
- 没有边可以连了
- 当前拓扑序集合为空,且最大堆中无节点,因此对当前节点加边无意义
- 当前拓扑序集合为空,且最大堆中最大的节点编号小于当前节点,因此对当前节点加边无意义
总结
这是一道挺难想的利用拓扑序的构造题,对于此类脑洞大开的题的确没有什么太好的方法,只能多做多思考多总结了!
代码
#include <bits/stdc++.h>
#define rep(i,a,b) for(int i = a; i <= b; i++)
const int N = 1e5+100;
using namespace std;
int n,m,k,deg[N],ans[N],tot;
vector<pair<int,int> > Edge;
vector<int> G[N];
priority_queue<int> q1, q2; // q1-拓扑,q2-之后加边的点
void init(){
scanf("%d%d%d",&n,&m,&k);
rep(i,1,m){
int u,v; scanf("%d%d",&u,&v);
G[u].push_back(v); deg[v]++;
}
rep(i,1,n)
if(!deg[i]) q1.push(-i);
}
void update(int x){
for(auto it:G[x])
if((--deg[it]) == 0) q1.push(-it);
ans[++tot] = x;
}
void output(){
rep(i,1,n) printf("%d%c", ans[i], " \n"[i==n]);
printf("%d\n", (int)Edge.size());
for(auto it:Edge)
printf("%d %d\n", it.first, it.second);
}
int main()
{
freopen("graph.in","r",stdin);
freopen("graph.out","w",stdout);
init();
while(q1.size() || q2.size()){
if(q1.size()){
int x = -q1.top(); q1.pop();
if(k == 0 || (!q1.size() && (!q2.size() || x > q2.top()))) update(x);
else k--, q2.push(x);
}
else if(q2.size()){
int x = q2.top(); q2.pop();
Edge.push_back(make_pair(ans[tot],x));
update(x);
}
}
output();
return 0;
}