【2015-2016 NEERC - G】Graph【构造 + 拓扑排序】

题意

n n n 个点, m m m 条边的有向图,现可以往上添加 k k k 条边,使得新图最小拓扑序最大,此处的大与小均指序列的字典序。 ( 1 ≤ n ≤ 100000 , 0 ≤ m , k ≤ 100000 ) (1\leq n\leq 100000,0\leq m,k\leq 100000) (1n100000,0m,k100000)


思路

比赛的时候看到这道题,想的就是贪心。对于此类题目,一个很明显的思路就是从开头到末尾,依次贪心,即让第一个位置字典序最大,再让第二个最大,依次往下。

因此不难想到,对于某一拓扑层来说,我们需要对该层中最小节点加边,使其在拓扑序之后的位置中出现。想到这一步之后,就陷入了卡顿,因为不知道应该选哪个节点向最小的节点连边。

看了其他人的做法之后,发现可以用一个最大堆存储这些暂时不知道如何连边的节点,在之后无法再继续拓扑的时候,再从中选一个节点出来连边。连边的时候直接从当前拓扑序末尾节点连向该节点即可。

于是问题变成什么样的点我们不需要对其连边。

  1. 没有边可以连了
  2. 当前拓扑序集合为空,且最大堆中无节点,因此对当前节点加边无意义
  3. 当前拓扑序集合为空,且最大堆中最大的节点编号小于当前节点,因此对当前节点加边无意义

总结

这是一道挺难想的利用拓扑序的构造题,对于此类脑洞大开的题的确没有什么太好的方法,只能多做多思考多总结了!


代码

#include <bits/stdc++.h>
#define rep(i,a,b) for(int i = a; i <= b; i++)
const int N = 1e5+100;
using namespace std;

int n,m,k,deg[N],ans[N],tot;
vector<pair<int,int> > Edge;
vector<int> G[N];
priority_queue<int> q1, q2; // q1-拓扑,q2-之后加边的点

void init(){
	scanf("%d%d%d",&n,&m,&k);
	rep(i,1,m){
		int u,v; scanf("%d%d",&u,&v);
		G[u].push_back(v); deg[v]++;
	}
	rep(i,1,n)
		if(!deg[i]) q1.push(-i);
}

void update(int x){
	for(auto it:G[x])
		if((--deg[it]) == 0) q1.push(-it);
	ans[++tot] = x;
}

void output(){
	rep(i,1,n) printf("%d%c", ans[i], " \n"[i==n]);
	printf("%d\n", (int)Edge.size());
	for(auto it:Edge)
		printf("%d %d\n", it.first, it.second);
}

int main()
{
	freopen("graph.in","r",stdin);
	freopen("graph.out","w",stdout);
	init();
	while(q1.size() || q2.size()){
		if(q1.size()){
			int x = -q1.top(); q1.pop();
			if(k == 0 || (!q1.size() && (!q2.size() || x > q2.top()))) update(x);
			else k--, q2.push(x);
		}
		else if(q2.size()){
			int x = q2.top(); q2.pop();
			Edge.push_back(make_pair(ans[tot],x));
			update(x);
		}
	}
	output();
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gene_INNOCENT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值