【概率论】高斯分布、中心极限定理、伯努利分布、二项分布

一、高斯分布

1.1 一元高斯分布

  • x ∈ R x\in \mathbb{R} xR
  • p ( x ) = 1 2 π σ e x p [ − 1 2 ( x − μ σ ) 2 ] p(x)=\displaystyle\frac{1}{\sqrt{2\pi}\sigma}exp[-\displaystyle\frac{1}{2}(\displaystyle\frac{x-\mu}{\sigma})^2] p(x)=2π σ1exp[21(σxμ)2]

1.2 多元高斯分布

  • x ∈ R n x\in \mathbb{R}^n xRn
  • p ( x ) = 1 ( 2 π ) d / 2 ∣ Σ ∣ 1 / 2 e x p [ − 1 2 ( x − μ ) T Σ − 1 ( x − μ ) ] p(x)=\displaystyle\frac{1}{(2\pi)^{d/2}|\Sigma|^{1/2}}exp[-\displaystyle\frac{1}{2}(x-\mu)^T\Sigma^{-1}(x-\mu)] p(x)=(2π)d/2Σ1/21exp[21(xμ)TΣ1(xμ)]
  • μ : \mu: μ: Mean vector
  • Σ : \Sigma: Σ: Covariance matrix
  • ( x − μ ) T Σ − 1 ( x − μ ) : \sqrt{(x-\mu)^T\Sigma^{-1}(x-\mu)}: (xμ)TΣ1(xμ) : Mahalanobis distance

在这里插入图片描述

1.3 性质

  • 仿射变换
    在这里插入图片描述
  • 向量子集的边缘分布
    在这里插入图片描述
  • 条件概率分布
    在这里插入图片描述
  • 高斯联合分布中的变量 x i x_i xi x j x_j xj 若不相关,则独立。

二、中心极限定理

  • X = ( X 1 , X 2 , . . . , X n ) X=(X_1,X_2,...,X_n) X=(X1,X2,...,Xn) 中各变量独立同分布
  • Z = f ( X ) = 1 n ∑ i = 1 n X i Z=f(X)=\displaystyle\frac{1}{n}\sum\limits_{i=1}^nX_i Z=f(X)=n1i=1nXi
  • n → ∞ n\rightarrow\infty n,则 p ( Z ) → ( E [ X i ] , V A R [ X i ] / n ) p(Z)\rightarrow(E[X_i],VAR[X_i]/n) p(Z)(E[Xi],VAR[Xi]/n) 的高斯分布

三、伯努利分布

概率质量函数:
p ( x ) = { p if  x = 1 1 − p if  x = 0         p(x)=\left\{\begin{aligned}& p && \text{if } x = 1 \\& 1-p && \text{if } x = 0\end{aligned}\right.\ \ \ \ \ \ \ p(x)={p1pif x=1if x=0       

期望推导:
E [ X ] = p + 0 ( 1 − p ) = p E[X]=p+0(1-p)=p E[X]=p+0(1p)=p

方差推导:
D [ X ] = E [ X 2 ] − E [ X ] 2 = ( 1 2 p + 0 2 ( 1 − p ) ) − p 2 = p ( 1 − p ) D[X]=E[X^2]-E[X]^2=(1^2p+0^2(1-p))-p^2=p(1-p) D[X]=E[X2]E[X]2=(12p+02(1p))p2=p(1p)

四、二项分布

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Gene_INNOCENT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值