【二项分布,泊松分布,高斯分布之间的转化关系】

本文探讨了概率论中三种重要分布——二项分布、泊松分布和高斯分布之间的转化关系。在特定条件下,当二项分布的样本数n趋向无穷大且概率p趋向于0时,它可以近似为泊松分布;同样,当n趋近无穷大时,二项分布也可近似为高斯分布。此外,泊松分布在均值较大时也能近似为高斯分布。这些转换在理解和应用概率分布时十分关键。
摘要由CSDN通过智能技术生成

概率密度(质量)函数:

高斯分布:

高斯分布是连续性的分布。其中u是均值,\sigma^2是方差。

二项分布:

其中,k是一系列的离散值,因为二项分布是一个离散分布,代表某时间成功(发生)的概率为p, 则在n次的抽样过程中,成功(或发生)了k次,不成功(不发生)的次数为n-k次,此时按照上式计算出严格叫概率质量函数(因为其离散),其均值为n*p,方差为n*p*(1-p)

泊松分布:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值