【压缩感知合集5】压缩感知简介和数学模型分析

1 压缩感知的简介

1.1 提出

D. Donoho、E. Candes 及华裔科学家 T. Tao等人提出了一种新的信息获取理论 - 压缩感知(Compressive Sensing)

Donoho D L. Compressed sensing[J] . IEEE Transactions on Information Theory, 2006, 52( 4) : 1289 - 1306

1.2 评价

  • 突破了香农-奈奎斯特采样定理的限制。
  • 实现对信号采样的同时完成压缩的过程。
  • 并不直接测量信号本身, 它使用非自适应线性投影(感知矩阵)来获得信号的整体构造从而直接得到重要的信息, 忽略那些在有损压缩中会被丢弃的信息。

1.3 主要过程

  • 稀疏表示:信号稀疏域的选取,是压缩感知理论的基础和前提; (参考信号的稀疏性可以参考另一篇blog【压缩感知合集2】(背景知识)信号稀疏表示的数学推导和解释理解
  • 投影测量:已经证明大部分具有一致分布的随机矩阵都可以作为观测矩阵;
  • 重构算法:由于压缩感知采用的是全局非自适应测量方法, 观测数量远远少于信号长度, 从而数据采集量大大减少。但是需要付出的代价是信号重建算法的软件成本。

1.4 简洁概括

如果信号是稀疏的,那么它可以由远低于采样定理要求的采样点重建恢复。

2 压缩感知的数学模型

给定输入信号 X ∈ R N × 1 \boldsymbol{X} \in \mathbb{R}^{N\times1} XRN×1,最终想要得到压缩信号 A ∈ R M × 1 \boldsymbol{A} \in \mathbb{R}^{M\times1} ARM×1 K < < N K<<N K<<N

image-20210709133311121

2.1 压缩过程(感知过程)分为(稀疏变换和投影测量)

2.1.1 稀疏变换(稀疏表示、稀疏过程)

找到一个基或者过完备字典 Ψ \boldsymbol{\Psi} Ψ,使得信号 X \boldsymbol{X} X Ψ \boldsymbol{\Psi} Ψ域是稀疏的,(参考补充材料稀疏)满足下面的公式
X = Ψ Y \boldsymbol{X}=\boldsymbol{\Psi} \boldsymbol{Y} X=ΨY
因为是规范正交基所以实现变换系数也就是压缩信号: Y = Ψ T X \boldsymbol{Y} = \boldsymbol{\Psi}^T \boldsymbol{X} Y=ΨTX,其中 Y \boldsymbol{Y} Y X \boldsymbol{X} X 的等价或逼近的稀疏表示。变换基 Ψ \boldsymbol{\Psi} Ψ的选择可以为某
种已被广泛应用的基,如小波基、傅里叶基、局部傅里叶基等。另外,可以使用紧框架(原子字典)来对信号进行稀疏表示, 如曲线波和轮廓波, 这两类变换基具有更好的方向性,并且各向异性,少量系数即可有效地捕捉图像的边缘轮廓,在边缘表示方面优于小波。

2.1.2 投影测量(测量过程)

观测矩阵 Φ ∈ R M × N \boldsymbol{\Phi} \in \mathbb{R}^{M\times N} ΦRM×N,观测矩阵也叫测量矩阵,感知矩阵,实现的功能是对信号进行降维和压缩
A = Φ X \boldsymbol{A} = \boldsymbol{\Phi}\boldsymbol{X} A=ΦX
同时也是对在 Ψ \boldsymbol{\Psi} Ψ域上的稀疏投影 Y \boldsymbol{Y} Y进行投影测量
A = Φ Ψ Y \boldsymbol{A} = \boldsymbol{\Phi}\boldsymbol{\Psi} \boldsymbol{Y} A=ΦΨY
矩阵 Φ \boldsymbol{\Phi} Φ需要满足的性质(需要保证稀疏向量 Y \boldsymbol{Y} Y N N N维降到 K K K 维时重要信息不被破坏。)

变换基 Ψ \boldsymbol{\Psi} Ψ不相关(会在之后的blog中有叙述)

有限等距性(Restricted Isometry Property,RIP)(会在之后的blog中有叙述)

2.1.3 整个压缩过程总结

整个压缩过程也可以被称为感知过程
A = Φ X = Φ Ψ Y = Θ Y \boldsymbol{A} =\boldsymbol{\Phi}\boldsymbol{X} = \boldsymbol{\Phi}\boldsymbol{\Psi} \boldsymbol{Y} = \boldsymbol{\Theta}\boldsymbol{Y} A=ΦX=ΦΨY=ΘY

Θ \boldsymbol{\Theta} Θ即为感知过程的核心命名为感知矩阵

image-20210710112220724

符号含义维度属性
X \boldsymbol{X} X输入信号;待压缩信号 R N × 1 \mathbb{R}^{N\times1} RN×1未知,需要恢复
Φ \boldsymbol{\Phi} Φ观测矩阵;测量矩阵 R M × N \mathbb{R}^{M \times N} RM×N已知(非自适应性)
Ψ \boldsymbol{\Psi} Ψ变换矩阵;变换基矩阵;稀疏基矩阵;稀疏矩阵;正交基字典矩阵 R N × N \mathbb{R}^{N\times N} RN×N已知(非自适应性)
Y \boldsymbol{Y} Y正交基变换后的稀疏表示 R N × 1 \mathbb{R}^{N\times1} RN×1未知,需要恢复
Θ \boldsymbol{\Theta} Θ感知矩阵 R M × N \mathbb{R}^{M\times N} RM×N已知(非自适应性)
A \boldsymbol{A} A观测压缩所得到压缩信号 R M × 1 \mathbb{R}^{M\times1} RM×1已知

2.2 恢复过程:重构算法的数学表示

在得到已经压缩完的采样信号 A \boldsymbol{A} A后,根据确定的固定性观测矩阵 Φ \boldsymbol{\Phi} Φ和稀疏矩阵 Ψ \boldsymbol{\Psi} Ψ的先验信息进行恢复,数学表达如下
X ˇ = f ( A , Θ ) \boldsymbol{\check{X}}=f(\boldsymbol{A},\boldsymbol{\Theta}) Xˇ=f(A,Θ)
N = M N=M N=M,正定方程有唯一解

M < < N M<<N M<<N,欠定方程

一般可以抽象为如下求解任务
min ⁡ ∥ Ψ T X ∥ 0 s . t . Θ X = Φ Ψ X = A \min \left\| \boldsymbol{\Psi}^{T} \boldsymbol{X}\right\|_{0} \\s.t. \boldsymbol{\Theta} \boldsymbol{X}=\boldsymbol{\Phi}\boldsymbol{\Psi}\boldsymbol{X}= \boldsymbol{A} minΨTX0s.t.ΘX=ΦΨX=A

注意

N = M N=M N=M,则可轻松由 A \boldsymbol{A} A解出 X \boldsymbol{X} X Y \boldsymbol{Y} Y

M < < N M<<N M<<N,可根据稀疏表示下的信号 Y \boldsymbol{Y} Y和矩阵所具有的RIP特性重构

LAST、参考文献

形象易懂讲解算法II——压缩感知 - 知乎

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值