压缩感知模型总结

本文总结了高光谱图像压缩感知领域的最新进展,探讨了非局部相似性和低秩约束在提高图像重建质量中的作用。研究了多种采样方式,包括基于编码孔径、张量非局部低秩正则化以及融合空间光谱信息的方法。各篇论文展示了如何利用这些技术提升高光谱图像的压缩和恢复效果,特别是在超分辨率重建和噪声去除方面。
摘要由CSDN通过智能技术生成

压缩感知采样方式以及模型总结——学习笔记


时间紧迫,会持续更新

Paper1: Rank Minimization for Snapshot Compressive Imaging

快照压缩成像(Snapshot compression imaging,简称SCI)是指将多帧图像映射到一个测量值中的压缩成像系统。在SCI中,测量的不是视频帧,而是多个帧的线性组合。SCI 中的期望信号通常是高维的,例如,从单个256×256(像素)的测量帧中恢复出空间分辨率为256×256(像素)的148帧视频。

研究现状

SCI的最新算法之一,仅基于高斯混合模型(GMM)的算法[19],[20],利用视频补丁的稀疏性。在广泛使用的视频中(例如,图5中的Kobe数据集),这些基于GMM的算法无法提供PSNR(峰值信噪比)大于30dB的重构视频帧。与模拟类似,对于SCI相机捕捉到的真实数据,GMM的结果会出现模糊和其他令人不快的伪影(图13)。模糊主要是由于GMM中稀疏先验的局限性,而令人不快的伪影可能是由系统噪声引起的。基于GMM的这些局限性,为了开发一种更好的重建算法,需要研究高维的结构信息,例如除了空间域外,还需要研究跨时间域谱域的非局部相似性。

本文建立了一个将视频/高光谱帧的非局部自相似性和秩最小化方法与SCI感知过程相结合的模型,以提高重建视频的质量。其结构如下:
在这里插入图片描述

采样方式

本文采样方式参照文献[5]Coded aperture compressive temporal imaging,其模型如下:
在这里插入图片描述
其中 Φ ∈ R n × n B Φ∈R^{n×nB} ΦRn×nB为传感矩阵,x∈ R n B × 1 R^{nB×1} RnB×1为期望信号(desired signal), g ∈ R n × 1 g∈R^{n×1} gRn×1为噪声。与传统的CS不同,这里考虑的传感矩阵不是稠密矩阵(dense matrix)。在SCI中,矩阵Φ具有非常特殊的结构,并且不是随机的,可以写成:
在这里插入图片描述
其中 D k D_k Dk n × n n×n n×n的对角矩阵。
以CACTI中的SCI为例,每一帧的图像与 C k C_k Ck做运算,测量值由下式给出;
在这里插入图片描述
Hadamard(元素方式)积:对应元素相乘。

将每一帧的图像信息折叠到一个空间,那么位置 ( i , j ) (i,j) (ij)的测量值如下:
在这里插入图片描述
在这里插入图片描述

WNNM与SCI模型

非局部相似

所有的视频帧 X k k B = 1 { {X_k}}^B_k=1 XkkB=1被分成 N N N个大小为 √ d × √ d √d×√d d×d的重叠块,每个块用向量 z i ∈ R d , i = 1 , 2 , … , N z_i∈R^d,i=1,2,…,N ziRdi=1,2N表示。第 i i i个patch z i z_i zi,从一个L×L×H像素的周围(搜索)窗口中选择其M个相似的面片,形成一个集合 S i Si Si,其中L×L表示窗口在空间上的大小,H表示窗口在时间上的大小(跨帧)。在此之后,Si中的这些斑块堆积成一个矩阵 Z i ∈ R d × M Z_i∈R^{d×M} ZiRd×M
在这里插入图片描述
这种由具有相似结构的斑块组成的矩阵 Z i Z_i Zi称为群,其中, z i , j z_{i,j} zi,j表示第 i i i个群组中的第 j

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值