MQ高可用性分析

ActiveMQ

ActiveMQ的高可用性架构是基于Master/Slave 模型的。ActiveMQ总共提供了四种配置方案来配置HA,其中Shared Nothing Master/Slave 在5.8版本之后不再使用了,并在ActiveMQ5.9版本中引入了基于Zookeeper的Replicated LevelDB Store HA方案。

三种模式:
Share nothing storage master/slave
Shared storage master/slave
Replicated LevelDB Store
Share nothing storage master/slave(非共享存储方案)

待补充

Shared storage master/slave

待补充

Replicated LevelDB Store

(在生产上比较常用的一种高可用模式)
基于复制的LevelDB Store,这是ActiveMQ全力打造的HA存储引擎,也是目前比较符合“Master-slave”架构模型的存储方案,此特性在5.9+版本中支持。我们从1)/2)两个方案中可见,“Shared Storage”模式只是利用了“一些小伎俩”,并不符合广泛意义上的“master-slave”模型(在存储上,和通讯机制上)。不过,“Replicated LevelDB Store”做到了!!
使用ZooKeeper(集群)注册所有的ActiveMQ Broker。只有其中的一个Broker可以提供服务,被视为 Master,其他的 Broker 处于待机状态,被视为Slave。如果Master因故障而不能提供服务,Zookeeper会从Slave中选举出一个Broker充当Master。
Slave连接Master并同步他们的存储状态,Slave不接受客户端连接。所有的存储操作都将被复制到 连接至 Master的Slaves。如果Master宕了,得到了最新更新的Slave会成为 Master。故障节点在恢复后会重新加入到集群中并连接Master进入Slave模式。
是不是觉得和Redis Sentinel主从高可用的方式很像,这里的zookeeper起到的作用和reids里的sentinel作用差不多。
https://www.jianshu.com/p/f72487d70c32
https://www.jianshu.com/p/44954255cf8e
https://blog.csdn.net/u010134382/article/details/84811798
https://blog.51cto.com/bobbie/1913052

=============================================================================

RabbitMQ 的高可用性

RabbitMQ 是比较有代表性的,因为是基于主从(非分布式)做高可用性的,我们就以 RabbitMQ 为例子讲解第一种 MQ 的高可用性怎么实现。
RabbitMQ 有三种模式:单机模式、普通集群模式、镜像集群模式

单机模式

单机模式,就是 Demo 级别的,一般就是你本地启动了玩玩儿的😄,没人生产用单机模式。

普通集群模式(无高可用性)

普通集群模式,意思就是在多台机器上启动多个 RabbitMQ 实例,每个机器启动一个。你创建的 queue,只会放在一个 RabbitMQ 实例上,但是每个实例都同步 queue 的元数据(元数据可以认为是 queue 的一些配置信息,通过元数据,可以找到 queue 所在实例)。你消费的时候,实际上如果连接到了另外一个实例,那么那个实例会从 queue 所在实例上拉取数据过来。
这种方式确实很麻烦,也不怎么好,没做到所谓的分布式,就是个普通集群。

镜像集群模式(高可用性)

这种模式,才是所谓的 RabbitMQ 的高可用模式。跟普通集群模式不一样的是,在镜像集群模式下,**你创建的 queue,无论元数据还是 queue 里的消息都会存在于多个实例上,**就是说,每个 RabbitMQ 节点都有这个 queue 的一个完整镜像,包含 queue 的全部数据的意思。然后每次你写消息到 queue 的时候,都会自动把消息同步到多个实例的 queue 上。
这样的话,

  • 好处在于:
    你任何一个机器宕机了,没事儿,其它机器(节点)还包含了这个 queue 的完整数据,别的 consumer 都可以到其它节点上去消费数据。
  • 坏处在于:
    第一,这个性能开销也太大了吧,消息需要同步到所有机器上,导致网络带宽压力和消耗很重!
    第二,这么玩儿,不是分布式的,就没有扩展性可言了,如果某个 queue 负载很重,你加机器,新增的机器也包含了这个 queue 的所有数据,并没有办法线性扩展你的 queue。

=============================================================================

Kafka 的高可用性

Kafka 一个最基本的架构认识:由多个 broker 组成,每个 broker 是一个节点;你创建一个 topic,这个 topic 可以划分为多个 partition,每个 partition 可以存在于不同的 broker 上,每个 partition 就放一部分数据。
这就是天然的分布式消息队列,就是说一个 topic 的数据,是分散放在多个机器上的,每个机器就放一部分数据。
实际上 RabbmitMQ 之类的,并不是分布式消息队列,它就是传统的消息队列,只不过提供了一些集群、HA(High Availability, 高可用性) 的机制而已,因为无论怎么玩儿,RabbitMQ 一个 queue 的数据都是放在一个节点里的,镜像集群下,也是每个节点都放这个 queue 的完整数据。
Kafka 0.8 以前,是没有 HA (高可用)机制的,就是任何一个 broker 宕机了,那个 broker 上的 partition 就废了,没法写也没法读,没有什么高可用性可言。
比如说,我们假设创建了一个 topic,指定其 partition 数量是 3 个,分别在三台机器上。但是,如果第二台机器宕机了,会导致这个 topic 的 1/3 的数据就丢了,因此这个是做不到高可用的。Kafka 0.8 以后,提供了 HA 机制(和mongodb分片复制集类似机制),就是 replica(复制品) 副本机制。每个 partition 的数据都会同步到其它机器上,形成自己的多个 replica 副本。所有 replica 会选举一个 leader 出来,那么生产和消费都跟这个 leader 打交道,然后其他 replica 就是 follower。写的时候,leader 会负责把数据同步到所有 follower 上去,读的时候就直接读 leader 上的数据即可。只能读写 leader?很简单,要是你可以随意读写每个 follower,那么就要 care 数据一致性的问题,系统复杂度太高,很容易出问题。Kafka 会均匀地将一个 partition 的所有 replica 分布在不同的机器上,这样才可以提高容错性。
这么搞,就有所谓的高可用性了,因为如果某个 broker 宕机了,没事儿,那个 broker上面的 partition 在其他机器上都有副本的。如果这个宕机的 broker 上面有某个 partition 的 leader,那么此时会从 follower 中重新选举一个新的 leader 出来,大家继续读写那个新的 leader 即可。这就有所谓的高可用性了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值