我的大数据之路--kafka1.0集成spark streaming2.0--python3

kafka1.0–>spark streaming2.0

查看spark版本与内置的scala版本

spark-shell

在这里插入图片描述
在Maven Repository下载
spark-streaming-kafka-0-10_2.11-2.0.0.jar文件,其中,2.11表示scala的版本,2.0.0表示Spark版本号,0-10表示kafka版本

注意!!!
Spark2.3版本中spark-streaming-kafka-0-10不支持python, 所以如果用在pyspark中就会报错。故而我这里使用Spark 2.0.0
在这里插入图片描述

一、下载依赖包

spark-stream-kafka-0.10_2.11-2.0.0.jar
在这里插入图片描述

  • 将依赖包拷贝到/user/spark/jars下。
  • 修改spark目录下的conf/spark-env.sh文件,(路径自己看着办)
  • spark-env.sh文件如下,没有配置的点我,往下拉找到spark配置
    在这里插入图片描述
    下载编译包
    这个主要是在spark程序运行的时候调用的,我觉得和版本没多大关系,反正我能运行
    在这里插入图片描述
    直接下载然后上传到虚拟机的 /user/spark/jars上
    注意!!!
    用户组都为hadoop hadoop,不然你会崩溃的。
    在这里插入图片描述
    二、开启集群,不能一键启动的点我呀,往下拉就找到啦
  1. 一shell启动zookeeper

    sh zoopkeeper_start.sh
    
  2. 一shell启动kafka

    sh kafka_start.sh
    
  3. 开启HDFS,配置好环境变量

    start-all.sh
    

三、创建kafka主题,配好环境变量比较方便

  1. 创建一个名为kafka-spark-treaming的主题

    kafka-topics.sh --create --zookeeper Master:2181,Slave1:2181,Slave2:2181 --replication-factor 3 --partitions 3 --topic kafka-spark-streaming
    

    在这里插入图片描述

  2. 查看是否创建成功

    kafka-topics.sh --describe --zookeeper Master:2181,Slave1:2181,Slave2:2181 --topic kafka-spark-streaming
    

    在这里插入图片描述

四、使用python编写spark streamnig代码

理解,spark streaming从kafka接收数据有两种方法:
(1)、使用receivers和高层次的API
(2)、使用Direct API和低层次的kafkaAPI
我这里使用的是(1)。

  1. 编写代码如下,vi kafka_spark_streaming.py

    ##-- coding: UTF-8 --
    
    from pyspark import SparkContext
    from pyspark.streaming import StreamingContext
    from pyspark.streaming.kafka import KafkaUtils
    
    #设置使用两个线程,设置程序的名字为KafkaWordCount
    sc=SparkContext("local[2]","KafkaWordCount")
    
    #处理时间间隔为2s
    ssc=StreamingContext(sc,2)
    
    #设置zookeeper
    zookeeper="192.168.23.200:2181,192.168.23.201:2181,192.168.23.202:2181"
    
    
    
    #设置要监听的主题
    topic={"kafka-spark-streaming":0,"kafka-spark-streaming":1,"kafka-spark-streaming":2}
    
    #在/user/kafka/config/consumer.properties 查看groupid="test-consumer-group"
    groupids="test-consumer-group"
    
    
    '''
    构造函数为KafkaUtils.createDstream(ssc, [zk], [consumer group id], [per-topic,partitions] )
    使用了receivers来接收数据,利用的是Kafka高层次的消费者api,
    对于所有的receivers接收到的数据将会保存在spark executors中,
    然后通过Spark Streaming启动job来处理这些数据,默认会丢失,可启用WAL日志,该日志存储在HDFS上
    '''
    
    lines=KafkaUtils.createStream(ssc,zookeeper,groupids,topic)
    
    lines_map=lines.map(lambda x:x[1])
    
    #对两秒内接收到的数据按空格分割
    words=lines_map.flatMap(lambda line:line.split(" "))
    
    #映射为(word,1)元组
    pairs=words.map(lambda word:(word,1))
    
    #每一行相同的key相加
    wordcounts=pairs.reduceByKey(lambda x,y:x+y)
    
    #输出文件到hdfs,前缀+自动加日期
    wordcounts.saveAsTextFiles("/user/kafka_spark_logs")
    wordcounts.pprint()
    
    #启动spark streaming
    ssc.start()
    
    #等待计算终止
    ssc.awaitTermination()
    
  2. 启动kafka生产者,输入数据

    kafka-console-producer.sh --broker-list 192.168.23.200:9092 --topic kafka-spark-streaming
    

    在这里插入图片描述

  3. 启动脚本,打印成功

    spark-submit --jars  /user/spark/jars/spark-streaming-kafka-0-8-assembly_2.11-2.0.1.jar kafka_spark_streaming.py 2> error.txt
    

    在这里插入图片描述
    hdfs上:

    hadoop fs -cat /user/kafka_spark_logs-*/*
    

    在这里插入图片描述

BUG

1、遇到Pycharm代码无法复制,无法选中删除,无法编辑。
选择菜单栏,Tools -->去掉打勾勾的Vim Emulator
在这里插入图片描述

参考
https://spark.apache.org/docs/2.0.1/streaming-kafka-0-8-integration.html
https://spark.apache.org/docs/2.0.1/submitting-applications.html
https://www.jianshu.com/p/04f8e78ea656
https://colobu.com/2015/01/05/kafka-spark-streaming-integration-summary/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值