利用PyTorch实现VGG16

本文详细介绍了如何使用PyTorch框架实现经典的VGG16深度学习模型,涵盖了从网络结构到多层表示学习的全过程,帮助读者深入理解卷积神经网络的工作原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import torch
import torch.nn as nn
import torch.nn.functional as F


class VGG16(nn.Module):
    
    
    def __init__(self):
        super(VGG16, self).__init__()
        
        # 3 * 224 * 224
        self.conv1_1 = nn.Conv2d(3, 64, 3) # 64 * 222 * 222
        self.conv1_2 = nn.Conv2d(64, 64, 3, padding=(1, 1)) # 64 * 222* 222
        self.maxpool1 = nn.MaxPool2d((2, 2), padding=(1, 1)) # pooling 64 * 112 * 112
        
        self.conv2_1 = nn.Conv2d(64, 128, 3) # 128 * 110 * 110
        self.conv2_2 = nn.Conv2d(128, 128, 3, padding=(1, 1)) # 128 * 110 * 110
        self.maxpool2 = nn.MaxPool2d((2, 2), padding=(1, 1)) # pooling 128 * 56 * 56
        
        self.conv3_1 = nn.Conv2d(128, 256, 3) # 256 * 54 * 54
        self.conv3_2 = nn.Conv2d(256, 256, 3, padding=(1, 1)) # 256 * 54 * 54
        self.conv3_3 = nn.Conv2d(256, 256, 3, padding=(1, 1)) # 256 * 54 * 54
        self.maxpool3 = nn.MaxPool2d((2, 2), padding=(1, 1)) # poolin
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值