torch
Oshrin
「努力すればするほど幸運がある」をずっと信じている!
The only real way to learn is through practice and actual coding.
展开
-
PyTorch中的BatchNorm2d层
先来看看pytorch中对于类的定义:CLASS torch.nn.BatchNorm2d(num_features, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)解析一下每个参数的作用:num_features:BatchNorm是针对每一个通道做的,所以这里应该填写(N, C, H, W)中的C...原创 2019-11-12 11:23:01 · 1131 阅读 · 0 评论 -
Error(s) in loading state_dict for DataParallel
关于PyTorch模型保存与导入的一些注意点:1.没有使用并行计算:import torch.nn as nnclass Net(nn.Module): def __init__(self): super().__init__() self.conv1 = nn.Conv2d(2, 2, 1) self.linear = nn...原创 2019-11-05 13:54:17 · 5311 阅读 · 1 评论 -
关于auto-gradient机制与detach函数
先讲一下叶子节点和非叶子节点的定义:叶子节点(张量的is_leaf)属性值为True,grad_fn为None,叶子节点有两种情况:第一种:由用户自行创建的节点(即不是由运算而来):a = torch.rand(5, 5, requires_grad=False)b = torch.rand(5, 5, requires_grad=False)c = torch.rand(5, ...原创 2019-10-28 15:11:17 · 544 阅读 · 0 评论 -
将两个list对应值相乘后得到的list值再相加
from functools import reduceimport torcha = torch.tensor([1, 4])b = torch.tensor([4, 7])list1 = [a, b]c = torch.tensor([7, 8])d = torch.tensor([6, 12])list2 = [c, d]output=reduce(lambda...原创 2019-10-22 16:30:35 · 3483 阅读 · 0 评论