动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形。A吃B, B吃C,C吃A。
现有N个动物,以1-N编号。每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种。
有人用两种说法对这N个动物所构成的食物链关系进行描述:
第一种说法是"1 X Y",表示X和Y是同类。
第二种说法是"2 X Y",表示X吃Y。
此人对N个动物,用上述两种说法,一句接一句地说出K句话,这K句话有的是真的,有的是假的。当一句话满足下列三条之一时,这句话就是假话,否则就是真话。
1) 当前的话与前面的某些真的话冲突,就是假话;
2) 当前的话中X或Y比N大,就是假话;
3) 当前的话表示X吃X,就是假话。
你的任务是根据给定的N(1 <= N <= 50,000)和K句话(0 <= K <= 100,000),输出假话的总数。
输入
第一行是两个整数N和K,以一个空格分隔。
以下K行每行是三个正整数 D,X,Y,两数之间用一个空格隔开,其中D表示说法的种类。
若D=1,则表示X和Y是同类。
若D=2,则表示X吃Y。
输出
只有一个整数,表示假话的数目。
样例输入
100 7 1 101 1 2 1 2 2 2 3 2 3 3 1 1 3 2 3 1 1 5 5
样例输出
3
具体的思想就是既然是互相之间的关系,很多说法是可以理解成向量,但其实本质还是关系
开始想用-1,1表示吃的关系,试了试有些麻烦,因为食物链是个环肯定是要%3的,所以干脆用1,2,0表示关系不用考虑正负了
表示和父节点的关系比较好,和根节点的话在合并的时候维护所有的很难
判断是不是假话首先判断是不是说过,说过的话肯定在同一个根节点下,根不同就是一定是真的并合并两棵树
根相同就可以判断真假了
#include<iostream>
using namespace std;
const int M = 50000;
int parent[M+1];
int rela[M+1];//记载和父节点的关系【0同类,1吃父,2父吃他,应该不会有未知,这样就是%3】
int num, sen;
int n_fake;
int getroot(int a)
{
if (a == parent[a])
{
return a;
}
int t = parent[a];//暂存
parent[a] = getroot(t);//路径压缩
rela[a] = (rela[a] + rela[t]) % 3;//从第一个递归开始一路+下来
return parent[a];//单纯寻找树根并进行路径压缩,同时更新rela
//开始这出错了,一直tle....
}
int main()
{
n_fake = 0;
cin >> num >> sen;
int re, m1, m2;
for (int i = 1; i <= num; i++)
{
parent[i] = i;
rela[i] = 0;//开始时是自身
}
for (int i = 1; i <= sen; i++)
{
cin >> re >> m1 >> m2;
if (m1 > num || m2 > num)
{
n_fake++;
continue;
}
int r1, r2;
r1 = getroot(m1);
r2 = getroot(m2);//已经呀缩路径,都挂在根节点下边,现在去计算和根节点的关系
if (r1!=r2)
{
if (re == 1)
{
parent[r2] = r1;
rela[r2] = (rela[m1] - rela[m2] + 3) % 3;
}//是同类
else if (re == 2)//m1吃m2
{
parent[r2] = r1;
rela[r2] = (rela[m1] - rela[m2] + 2) % 3;//画图...
}//我多算了一次getroot少算一次吧
}
else if(r1 == r2)//验证
{
if (re == 1 && rela[m1] != rela[m2])//已经在根节点下边
{
n_fake++;
continue;
}
else if (re == 2 && (rela[m1] - rela[m2] + 3) % 3 != 1)//m1吃m2
{
n_fake++;
continue;
}
}
}
cout << n_fake;
return 0;
}