最小生成树-洛谷P2121-拆地毯

题目背景
还记得 NOIP 2011 提高组 Day1 中的铺地毯吗?时光飞逝,光阴荏苒,三年过去了。组织者精心准备的颁奖典礼早已结束,留下的则是被人们踩过的地毯。请你来解决类似于铺地毯的另一个问题。

题目描述
会场上有 n 个关键区域,不同的关键区域由 m 条无向地毯彼此连接。每条地毯可由三个整数 u、v、w 表示,其中 u 和 v 为地毯连接的两个关键区域编号,w 为这条地毯的美丽度。

由于颁奖典礼已经结束,铺过的地毯不得不拆除。为了贯彻勤俭节约的原则,组织者被要求只能保留 K 条地毯,且保留的地毯构成的图中,任意可互相到达的两点间只能有一种方式互相到达。换言之,组织者要求新图中不能有环。现在组织者求助你,想请你帮忙算出这 K 条地毯的美丽度之和最大为多少。

输入格式
第一行包含三个正整数 n、m、K。

接下来 m 行中每行包含三个正整数 u、v、w。

输出格式
只包含一个正整数,表示这 K 条地毯的美丽度之和的最大值。

输入输出样例
输入
5 4 3
1 2 10
1 3 9
2 3 7
4 5 3
输出
22
说明/提示
选择第 1、2、4 条地毯,美丽度之和为 10 + 9 + 3 = 22。

若选择第 1、2、3 条地毯,虽然美丽度之和可以达到 10 + 9 + 7 = 26,但这将导致关键区域 1、2、3 构成一个环,这是题目中不允许的。

1<=n,m,k<=100000

题解:反向kru思维,他要求最大的K的和,那么从大到小排序,然后+到k条为止。

#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
#define ll long long
const int N = 200005;

int f[N];
int n,m;
int u,v;
int cnt;
ll ans;
int k;
struct node{
	int u,v;
	ll val;
}q[N];

bool cmp(node a, node b){
	return a.val > b.val;
}

int find(int x){
	return f[x] == x ? x : f[x] = find(f[x]);
}

void kru(){
	for(int i = 1; i <= m; i++){
		u = find(q[i].u);
		v = find(q[i].v);
		if(u == v) continue;
		f[u] = v;
		ans += q[i].val;
		cnt++;
		if(cnt == k) {
			break;
		}
	}
}

int main(){
	scanf("%d%d%d", &n, &m, &k);
	for(int i = 1; i <= n; i++) f[i] = i;
	for(int i = 1; i <= m; i++){
		scanf("%d%d%d", &q[i].u, &q[i].v, &q[i].val);
	}
	sort(q + 1, q + m + 1, cmp);
	kru();
	printf("%d", ans);
	return 0;
}
/*
4 5
1 2 2
1 3 2
1 4 3
2 3 4
3 4 3
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值