N皇后问题(java版)

N皇后问题(java注释版)

n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 ‘Q’ 和 ‘.’ 分别代表了皇后和空位。其中皇后彼此不能相互攻击,也就是说:任何两个皇后都不能处于同一条横行、纵行或斜线上。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/n-queens

class Solution {
    List<List<String>> res = new ArrayList<>();

    public List<List<String>> solveNQueens(int n) {
        //初始化chessboard数组
        char[][] chessboard = new char[n][n];
        for(char[] c : chessboard){
            Arrays.fill(c,'.');
        }
        //进入回溯算法
        backtrack(n,0,chessboard);
        return res;
    }

    public void backtrack(int n,int row,char[][] chessboard){
        if(row == n){
            //满足结束条件则添加一种解,Array2List()将数组转换成链表
            res.add(Array2List(chessboard));
            return;
        }
        for(int col=0;col<n;col++){
            //判断当前即将放入皇后的位置是否可以放入皇后
            if(isVaild(row,col,n,chessboard)){
                //做选择
                chessboard[row][col] = 'Q';
                backtrack(n,row+1,chessboard);
                //撤销选择
                chessboard[row][col] = '.';
            }
        }
    }

    public List Array2List(char[][] chessboard){
        List<String> list = new ArrayList<>();

        for(char[] c : chessboard){
            //将数组每一行转换成一个string,
            list.add(String.copyValueOf(c));
        }
        return list;
    }

    public boolean isVaild(int row,int col,int n,char[][] chessboard){
        //检查同一列上有没有重复的'Q'
        for(int i=0;i<n;i++){
            if(chessboard[i][col]=='Q'){
                return false;
            }
        }
        //检查当前元素的右上方是否包含'Q'
        for(int i=row-1,j=col+1;i>=0&&j<=n-1;i--,j++){
            if(chessboard[i][j]=='Q'){
                return false;
            }
        }
        //检查当前元素的左上方是否包含'Q'
        for(int i=row-1,j=col-1;i>=0&&j>=0;i--,j--){
            if(chessboard[i][j]=='Q'){
                return false;
            }
        }
        return true;
    }
}
n皇后问题是一个经典的回溯算法问题,它的目标是在一个n×n的棋盘上放置n个皇后,使得每个皇后都不会互相攻击,即任意两个皇后都不在同一行、同一列和同一条对角线上。下面是Java语言实现n皇后问题的代码: ```java public class NQueens { private int[] queens; // 存放每行皇后所在的列数 private boolean[] rows; // 标记每行是否有皇后 private boolean[] diagonal1; // 标记正对角线是否有皇后 private boolean[] diagonal2; // 标记反对角线是否有皇后 private List<List<String>> result; // 存放所有合法的棋盘布局 public List<List<String>> solveNQueens(int n) { queens = new int[n]; rows = new boolean[n]; diagonal1 = new boolean[2 * n - 1]; diagonal2 = new boolean[2 * n - 1]; result = new ArrayList<>(); backtrack(0, n); return result; } private void backtrack(int row, int n) { if (row == n) { // 找到一组合法的棋盘布局 List<String> board = new ArrayList<>(); for (int i = 0; i < n; i++) { char[] rowChars = new char[n]; Arrays.fill(rowChars, '.'); rowChars[queens[i]] = 'Q'; board.add(new String(rowChars)); } result.add(board); } else { for (int col = 0; col < n; col++) { // 枚举当前行皇后可以放置的列数 if (rows[row] || diagonal1[row + col] || diagonal2[row - col + n - 1]) { continue; // 如果当前位置不合法,直接跳过 } queens[row] = col; rows[row] = true; diagonal1[row + col] = true; diagonal2[row - col + n - 1] = true; backtrack(row + 1, n); // 继续放置下一行的皇后 queens[row] = 0; rows[row] = false; diagonal1[row + col] = false; diagonal2[row - col + n - 1] = false; } } } } ``` 该算法的时间复杂度为O(n^n),因为每个皇后都有n个选择,总共有n个皇后,所以时间复杂度为n^n。在实际应用中,n的范围比较小,该算法的效率是可以接受的。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值