N皇后问题(java注释版)
n 皇后问题 研究的是如何将 n 个皇后放置在 n×n 的棋盘上,并且使皇后彼此之间不能相互攻击。给你一个整数 n ,返回所有不同的 n 皇后问题 的解决方案。每一种解法包含一个不同的 n 皇后问题 的棋子放置方案,该方案中 ‘Q’ 和 ‘.’ 分别代表了皇后和空位。其中皇后彼此不能相互攻击,也就是说:任何两个皇后都不能处于同一条横行、纵行或斜线上。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/n-queens
class Solution {
List<List<String>> res = new ArrayList<>();
public List<List<String>> solveNQueens(int n) {
//初始化chessboard数组
char[][] chessboard = new char[n][n];
for(char[] c : chessboard){
Arrays.fill(c,'.');
}
//进入回溯算法
backtrack(n,0,chessboard);
return res;
}
public void backtrack(int n,int row,char[][] chessboard){
if(row == n){
//满足结束条件则添加一种解,Array2List()将数组转换成链表
res.add(Array2List(chessboard));
return;
}
for(int col=0;col<n;col++){
//判断当前即将放入皇后的位置是否可以放入皇后
if(isVaild(row,col,n,chessboard)){
//做选择
chessboard[row][col] = 'Q';
backtrack(n,row+1,chessboard);
//撤销选择
chessboard[row][col] = '.';
}
}
}
public List Array2List(char[][] chessboard){
List<String> list = new ArrayList<>();
for(char[] c : chessboard){
//将数组每一行转换成一个string,
list.add(String.copyValueOf(c));
}
return list;
}
public boolean isVaild(int row,int col,int n,char[][] chessboard){
//检查同一列上有没有重复的'Q'
for(int i=0;i<n;i++){
if(chessboard[i][col]=='Q'){
return false;
}
}
//检查当前元素的右上方是否包含'Q'
for(int i=row-1,j=col+1;i>=0&&j<=n-1;i--,j++){
if(chessboard[i][j]=='Q'){
return false;
}
}
//检查当前元素的左上方是否包含'Q'
for(int i=row-1,j=col-1;i>=0&&j>=0;i--,j--){
if(chessboard[i][j]=='Q'){
return false;
}
}
return true;
}
}