题目链接:?1239: n皇后问题
参考:?n皇后问题_百度搜索
Description
在n*n
的方格国际棋盘上放置n
个皇后,任意2
个皇后不能位于同一行,同一列或同一斜线(正斜线或反斜线)上。对于任意一个n
,输出合理放置方法的方案数。
Input
有多组测试样例。每组给一个数n
(1<= n <= 13)。当n
为0
的时候输入结束。0
不需要处理。
Output
对于每个n
,输出一个数,表示n*n
的棋盘能按题目要求放置n
个皇后的方案数。
Sample Input
3
5
8
0
Sample Output
0
10
92
思路
八皇后问题,是一个古老而著名的问题,是回溯算法的典型案例。——来自百度
代码
/**
* Time 922ms
* @author wowpH
* @version 1.2
* @date 2019年5月26日下午11:13:41
* Environment: Windows 10
* IDE Version: Eclipse 2019-3
* JDK Version: JDK1.8.0_112
*/
import java.util.Scanner;
public class Main {
private Scanner sc;
private short n;// 棋盘宽度和皇后个数
// true有皇后,false无皇后
private boolean[] column;// 每列的皇后情况,下标从0开始
private boolean[] slash;// 正斜线,'/',下标从0开始
private boolean[] backSlash;// 反斜线,'\',下标从1开始
private int solution;// 方案数
public Main() {
sc = new Scanner(System.in);
while (sc.hasNext()) {
n = sc.nextShort();
if (0 == n) {
break; // 输入0结束
}
column = new boolean[n]; // n列
slash = new boolean[2 * n - 1]; // 2*n-1条正斜线
backSlash = new boolean[2 * n]; // 2*n-1条反斜线
solution = 0; // 初始方案数
backTrack(0); // 回溯,从第0行起
System.out.println(solution); // 输出方案个数
}
sc.close();
}
// 回溯
private void backTrack(int row) {
if (row >= n) {// 回溯结束条件
solution++;
return;
}
for (short i = 0; i < n; i++) { // 每行n列
if (column[i] || slash[row + i] || backSlash[n - row + i]) {
continue;// 当前位置的同一列或正斜线或反斜线中有皇后
}
// 当前位置的任何方向无皇后,于是在这里放一个皇后
column[i] = true;
slash[row + i] = true;
backSlash[n - row + i] = true;
backTrack(row + 1); // 继续回溯下一行
// 恢复到无皇后的情况
column[i] = false;
slash[row + i] = false;
backSlash[n - row + i] = false;
}
}
public static void main(String[] args) {
new Main();
}
}
版权声明:
- 转载请于首页注明链接形式的WUSTOJ 1239: n皇后问题(Java)——wowpH;
- 代码原创,公开引用不能删除首行注释(作者,版本号,时间等信息);
- 如果有疑问欢迎评论区留言,尽量解答;
- 如果有错误,还望大侠评论区指正。