最长递增子序列

题目描述

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例

示例1

输入:nums = [10,9,2,5,3,7,101,18]
输出:4
解释:最长递增子序列是 [2,3,7,101],因此长度为 4

示例2

输入:nums = [0,1,0,3,2,3]
输出:4

示例3

输入:nums = [7,7,7,7,7,7,7]
输出:1

思路

定义dp[i]表示以第i个元素为结尾的最长上升子序列的长度。

代码如下

	public int lengthOfLISNormal1(int[] nums) {
        int n = nums.length;
        if(n == 0 || n == 1) return n;
        // dp[i]表示以第i个元素为结尾的最长上升子序列的长度。
        int[] dp = new int[n];
        Arrays.fill(dp, 1);
        int res = 1;
        for(int i = 1;i < n;i++){
            for(int j = 0;j < i;j++){
                if(nums[i] > nums[j]){
                    // dp[j] + 1 表示在以 nums[j] 结尾的上升子序列的末尾添加当前元素
                    //  nums[i] 后,得到的新的上升子序列长度为 dp[j] + 1。因为当前元
                    // 素 nums[i] 可能可以添加到以 nums[j] 结尾的上升子序列中,所以需
                    // 要比较加入当前元素后子序列的长度是否更长,如果更长则更新当前
                    // dp[i] 的值。
                    dp[i] = Math.max(dp[i],dp[j] + 1);
                }
            }
            res = Math.max(res, dp[i]);
        }
        return res;
    }

输出最长递增子序列

代码1

	public List<Integer> printLengthOfLISNormal(int[] nums) {
        int n = nums.length;
        // dp[i]表示以第i个元素为结尾的最长上升子序列的长度。
        List<Integer>[] dp = new List[nums.length];
        for (int i = 0; i < n; i++) {
            dp[i] = new ArrayList<>();
        }
        dp[0].add(nums[0]);
        for(int i = 1;i < n;i++){
            int index = -1, maxLen = 0;
            for(int j = 0;j < i;j++){
                if(nums[i] > nums[j] && dp[j].size() > maxLen){
                    maxLen = dp[j].size();
                    index = j;
                }
            }
            if(index != -1){
                dp[i].addAll(dp[index]);
            }
            dp[i].add(nums[i]);
        }
        List<Integer> res = dp[0];
        for (int i = 1; i < dp.length; i++) {
            if (res.size() < dp[i].size()) {
                res = dp[i];
            }
        }
        return res;
    }

代码2

	public List<Integer> printLengthOfLISNormal1(int[] nums) {
        int n = nums.length;
        int[] dp = new int[n];  // dp[i]表示以第i个元素为结尾的最长上升子序列的长度
        Arrays.fill(dp, 1);  // 初始时,每个元素自成一个子序列

        int maxLength = 1, endIndex = 0;  // 记录全局最长子序列的长度和结束位置

        for (int i = 1; i < n; i++) {
            for (int j = 0; j < i; j++) {
                if (nums[i] > nums[j]) {
                    dp[i] = Math.max(dp[i], dp[j] + 1);

                    // 更新全局最长子序列的信息
                    if (dp[i] > maxLength) {
                        maxLength = dp[i];
                        endIndex = i;
                    }
                }
            }
        }

        // 根据全局最长子序列的长度和结束位置,回溯构造最长上升子序列
        List<Integer> res = new ArrayList<>();
        for (int i = endIndex; i >= 0; i--) {
            if (dp[i] == maxLength) {
                res.add(nums[i]);
                maxLength--;
            }
        }

        Collections.reverse(res);  // 因为是逆序添加的,需要翻转一下得到正确顺序
        return res;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值