NumPy函数汇总

一、创建ndarray

        1. 使用np.array()由python list创建

        2. 使用np的常规函数创建

                1) np.ones(shape, dtype=None, order='C')

                2) np.zeros(shape, dtype=float, order='C')

                3) np.full(shape, fill_value, dtype=None, order='C')

                4) np.eye(N, M=None, k=0, dtype=float)

                5) np.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)

                6) np.arange([start, ]stop, [step, ]dtype=None)

                7) np.random.randint(low, high=None, size=None, dtype='l')

                8) np.random.randn(d0, d1, ..., dn)

                9)np.random.normal(loc=0.0, scale=1.0, size=None)

                10) np.random.random(size=None)

                11) np.random.rand(d0, d1, ..., dn)

二、ndarray的属性

        1. ndim:维度

        2. shape:形状(各维度的长度)

        3. size:总长度

        4. dtype:元素类型

三、ndarray的基本操作

        1. 索引

                1) a[3]

                2) a[3][4]

                3) a[-2,-3,3]

        2. 切片

               1)  a[::-1]

                2)  n[:, ::-1]

        3. 变形

                1) np.reshape(a,newshape,order='C')

        4. 级联

                1) np.concatenate(a,b,axis=None)

                2) np.hstack(a,b)

                3) np.vstack(a,b)

        5. 拆分

                1) np.split(a,indices_or_sections=None,axis=None)

                2) np.vsplit(a,indices_or_sections=None,axis=None)

                3) np.hsplit(a,indices_or_sections=None,axis=None)

        6. 拷贝/复制/副本

                1) a.copy()

        7. 转置

                1) a.T

                2) np.transpose(a, axes=None)  

四、ndarray的聚合操作

        1. np.sum(a, axis=None) # 求和

        2. np.max(a, axis=None) # 最大值

        3. np.min(a, axis=None) # 最小值

        4. np.mean(a, axis=None) # 平均值

            np.average(a, axis=None)

        5. np.median(a, axis=None) # 中位数

        6. np.argmin(a, axis=None) # 最小数下标

        7. np.argmax(a, axis=None) # 最大数下标

        8. np.std(a, axis=None) # 标准差

        9. np.var(a, axis=None) # 方差

        10. np.power(n,幂) # 次方

        11. np.argmax(a) # 根据条件查找

              np.argwhere(n==np.max(a)) # 根据条件查找

五、ndarray的矩阵操作

        1. 基本矩阵操作

                算术运算符

                        1) a + 1  # 加
                        2) a - 1  # 减
                        3) a * 2  # 乘
                        4) a / 2  # 除
                        5) a // 2  # 整除
                        6) a % 2  # 余数

                 线性代数中常用矩阵操作

                        1) a1 @ a2  # 乘积

                        2) np.linalg.inv(a) # 逆矩阵

                        3) np.linalg.det(a) # 计算矩阵行列式

                        4) np.linalg.matrix_rank(a)# 矩阵的秩(满秩矩阵或奇异矩阵)

                其他数学函数

                        1) np.abs(a) # 绝对值
                        2) np.sqrt(a) # 开平方
                        3) np.square(a) # 平方
                        4) np.exp(a) # 指数
                        5) np.log(a) # 自然对数,以e为底的对数
                        6) np.log(np.e)  # 自然对数,以e为底的对数
                        7) np.log(1)  # 0
                        8) np.log2(a) # 对数
                        9) np.log10(a) # 10为底的对数  常用对数

                        10) np.sin(a) # 正弦
                        11) np.cos(a) # 余弦
                        12) np.tan(a) # 正切
                        13) np.round(a) # 四舍五入
                        14) np.ceil(a) # 向上取整
                        15) np.floor(a) # 向下取整

                        16) np.cumsum(n) # 计算累加和

        2. 广播机制

六、ndarray的排序

        1. 快速排序

                1) np.sort(a) # 不改变输入

                2) ndarray.sort(a) # 本地处理,不占用空间,但改变输入

七、ndarray文件操作

        1. 保存数组

                1) np.save(a) # 保存ndarray到一个npy文件

                2) np.savez(a,xarr = None,yarr = None) # 将多个array保存到一个npz文件中

        2. 读取数组

                1) np.load(a) # 读取npz文件

        3. csv、txt文件的读写操作

                1) np.savetxt(file, a, delimiter) # 储存数组到txt或csv

                2) np.loadtxt(a, delimiter, dtype=None) # 读取txt或csv

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值