LightOJ - 1236 Pairs Forming LCM 算数基本定理

a=p1 ^ a1 * p2 ^ a2 *..........*pn ^ an

b=p1 ^ b1 * p2 ^ b2 *..........*pn ^ bn

gcd(a,b)=p1 ^ min(a1,b1) * p2 ^ min(a2,b2) *..........*pn ^ min(an,bn)

lcm(a,b)=p1 ^ max(a1,b1) * p2 ^ max(a2,b2) *..........*pn ^ max(an,bn)

n = p1 ^ e1* p2 ^ e2 *.....* pn ^en

lcm(a,b) == n , 则 max(a1,b1) ==e1    max(a2,b2) ==e2   ...    max(an,bn) == en;

则 当 a 的 因数pi 指数为ei 时, b 的因数 pi 指数 有 [0,ei ] 共 ei + 1种选择,

a , b交换也是一样, 对于 两种都选 ei 重复 ,则 对每个指数 ei, 有 2*(ei +1)- 1 种选择

题中要求 i < = j 的对数,除了 (n,n)这一对,另外都重复了 ans = (ans+1)/2

//LightOJ - 1236 Pairs Forming LCM 
//算数基本定理 
#include <bits/stdc++.h>
#define ll long long
#define LL long long
using namespace std;
const int maxn = 10000010;
bool is_prime[maxn];
int prime[maxn/10];
void get_prime(){
	memset(is_prime,0,sizeof(is_prime));
	for(int i=2;i<maxn;i++){
		if(!is_prime[i])prime[++prime[0]] = i;
		for(int j=1;j<=prime[0]&&prime[j]*i<maxn;j++){
			is_prime[prime[j]*i] = 1;
			if(i%prime[j]==0)break;
		}
	}
}

ll getfact(ll x){
	ll ans = 1,tmp = x;
	ll j = 1;
	while(j<prime[0]&&prime[j]*prime[j]<=tmp){
			if(tmp%prime[j]==0){
				ll cnt = 0;
				while(tmp%prime[j]==0)tmp/=prime[j],cnt++;
				ans*=(1+2*cnt);
			}
			j++;
	}
	if(tmp>1)ans*=3;	
	return (ans+1)/2;
}

int main()
{
	get_prime();
	int t,cnt=1;
	ll a;
	scanf("%d",&t);
	while(t--){
		scanf("%lld",&a);
		printf("Case %d: %lld\n",cnt++,getfact(a));
	}
	return 0;
 } 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wym_king

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值