uPDF:免费功能强大的 PDF 全能工具箱, PDF 文件处理利器

PDF 是一种我们经常会遇到的文件格式,不同于 Word 打开就能编辑修改,PDF 文件的处理往往需要专门的软件才行。

比如 PDF 转 Word、图片制作 PDF、PDF去水印等,经常难倒不少人。

今天分享一款完全免费的本地PDF 处理软件——「uPDF」,完美解决 PDF 处理问题!

uPDF

uPDF 是吾爱破解大神howze开发的一款功能强大的Windows 端PDF 全能工具箱软件,堪称PDF 文件处理神器!最重要的是完全免费!非常良心好用,值得一试。

目前该软件仅支持 Windows 版本,支持 Win7 和 Win10 。

下载地址:http://www.zjkweiqi.cn/pcdown/993.html

主要功能:

包含了 11 个实用的 PDF 处理功能,各项功能清晰明了一目了然!

 

· PDF 压缩

· PDF 转 Word / Excel / 图片/ PPT

· PDF 图片提取

· PDF 文件的拆分 / 合并

· PDF 文件去水印

· 图片转 PDF

· PDF去保护

使用方法

uPDF体积小巧,仅 30M大小 ,软件为单文件绿色版, 不需要安装。

下载软件后,双击运行 uPDF.exe 即可,点击对应功能按钮,“添加文件”或者直接把文件拖入软件界面,设置“输出路径”,点击开始。

 

简单、易用、无广告,相当良心。

uPDF的每个功能处理效果都是非常出色,每个功能也都支持非常丰富的参数设置,处理过程中没有任何水印,对 PDF 文件也没有任何页数限制。

PDF去水印

uPDF支持非常好用的 PDF 去水印功能,这也是uPDF主打的特色功能,它的 PDF 去水印功能处理效果出色,并且处理速度很快。

支持默认模式和手动模式,一般选择默认模式即可。

手动模式并不比默认模式更高级,而是深度分析PDF文件中的文字及图片水印

PDF图片提取

适用于将PDF文档(例如由图文word转换来的PDF文档)中的图片单独提取出来

2点说明:

1、关于报毒:程序做了加密和打包,绿色单文件,无需安装,方便携带,无毒,火绒测试通过,报毒的自行判断。

2、关于软件无法启动:多属于系统环境问题,win7 和 win10 都测试通过。

结语

uPDF 完全免费,常用功能都有,使用起来没有任何限制,比起一些专业的收费软件来说,反而更好用,完全可以满足日常需求。并且是本地软件,可以放在 U 盘随时使用,非常给力!

有需要的小伙伴可以下载体验试试。

### 使用 Pandas 处理会员数据集示例 #### 导入必要的库并加载数据 为了处理会员相关的数据集,首先需要安装和导入 `pandas` 库。如果尚未安装该库,则可以通过 pip 进行安装。 ```bash pip install pandas ``` 接着,在 Python 脚本中导入所需的模块: ```python import pandas as pd ``` 假设有一个名为 `members.csv` 的 CSV 文件包含了会员的相关信息,可以使用如下方式将其读取到 DataFrame 中: ```python df_members = pd.read_csv('path/to/members.csv') df_members.head() ``` 这会显示前五行记录以便快速预览数据[^1]。 #### 探索数据集基本信息 了解数据集的整体情况对于后续分析至关重要。通过调用 `.info()` 方法可以获得有关各列的数据类型以及是否存在缺失值的信息;而 `.describe()` 则能给出数值型字段的统计摘要。 ```python print(df_members.info()) print(df_members.describe()) ``` #### 清洗与准备数据 针对可能存在的脏数据或不一致之处进行清理工作非常重要。例如去除重复项、填补或删除含有缺失值得行/列等操作均有助于提高模型训练效果。 ```python # 删除完全为空白的任何行 df_cleaned = df_members.dropna(how='all') # 填充特定列中的NA/NAN为指定默认值 df_filled = df_cleaned.fillna({'age': 30}) # 移除多余的空白字符 df_final = df_filled.apply(lambda x: x.str.strip() if x.dtype == "object" else x) ``` 以上代码片段展示了几个常见的数据清洗技巧[^2]。 #### 数据探索性分析(EDA) 利用图表直观展示变量间的关系能够帮助发现潜在模式。这里以绘制年龄分布直方图为例说明如何借助 Matplotlib 或 Seaborn 实现简单的可视化功能。 ```python import matplotlib.pyplot as plt plt.hist(df_final['age'], bins=20, edgecolor="black") plt.title('Age Distribution of Members') plt.xlabel('Age') plt.ylabel('Frequency') plt.show() ``` 此外还可以计算不同性别成员的数量比例作为另一个例子来进行描述性统计分析。 ```python gender_counts = df_final.groupby(['gender']).size().reset_index(name='counts') print(gender_counts) ``` 上述命令将返回按性别分类汇总后的计数结果[^3]。 #### 特征工程 基于业务逻辑创建新的特征往往能在建模阶段带来意想不到的好处。比如根据注册日期推算出每位用户的忠诚度等级就是一个不错的尝试方向之一。 ```python from datetime import datetime def calculate_tenure(row): start_date = row['signup_date'] end_date = datetime.now().date() delta_days = (end_date - start_date).days if delta_days >= 730: return 'Loyal' elif delta_days >= 365 and delta_days < 730: return 'Regular' else: return 'New' df_with_features = df_final.copy() df_with_features['tenure'] = df_with_features.apply(calculate_tenure, axis=1) print(df_with_features[['name', 'signup_date', 'tenure']].head()) ``` 这段程序定义了一个辅助函数用于评估客户的忠诚状态,并据此新增了一列表达这一属性[^4]。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值