小目标检测

本文探讨了在处理高分辨率图像时,如何通过特征图尺寸调整来平衡小目标检测和计算资源。介绍了网络前向传播中显存管理的问题,以及YOLT算法提出的分割检测策略。同时指出,卷积核大小的选择对局部特征提取的影响,强调了对于小特征的检测,小卷积核的重要性。总结了网络设计中应对大图和小目标的挑战,为图像识别提供优化思路。
摘要由CSDN通过智能技术生成

 假如网络输入是608*608大小的,最后得到的特征图是19*19,38*38,76*76.三个特征图中,最大的76*76负责检测小目标,而对应到608*608,每格特征图的感受野是608/76=8*8的大小。

å¾ç

再将608*608对应到7680*2160上,以最长边7680为例,7680/608*8=101。

即如果原始图像中目标的宽或高小于101像素,网络很难学习到目标的特征信息。

很多图像分辨率很大,如果简单的进行下采样,下采样的倍数太大,容易丢失数据信息。但是倍数太小,网络前向传播需要在内存中保存大量的特征图,极大耗尽GPU资源,很容易发生显存爆炸,无法正常的训练及推理。

因此可以借鉴2018年YOLT算法的方式,改变一下思维,对大分辨率图片先进行分割,变成一张张小图,再进行检测。

2.如果本身要提取的特征很小那卷积核也应该很小,卷积核太大比如16x16 vs 4x4这样的差异可能导致丢失一些局部特征

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值