Spark-MLlib 学习入门到掌握-StandardScaler归一化[24]

  • 归一化后加快了梯度下降求最优解的速度;

  • 归一化有可能提高精度;

  def StandardScalerTest(): Unit ={
    import org.apache.spark.ml.feature.StandardScaler
    val spark: SparkSession = SparkSession.builder().appName("implicits").master("local[2]").getOrCreate()

    val dataFrame = spark.read.format("libsvm").load("F:\\sparkData/mllib/sample_libsvm_data.txt")

    val scaler = new StandardScaler()
      .setInputCol("features")
      .setOutputCol("scaledFeatures")
      .setWithStd(true)
      .setWithMean(false)

    // Compute summary statistics by fitting the StandardScaler.
    val scalerModel = scaler.fit(dataFrame)

    // Normalize each feature to have unit standard deviation.
    val scaledData = scalerModel.transform(dataFrame)
    scaledData.collect().foreach(println)

  }

运行结果
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值