- 博客(185)
- 收藏
- 关注
原创 藏文智能输入入门实践-简单拼写纠错
基于编辑距离算法计算两个词之间的最少操作次数(增加、删除、替换),从而判断哪个词更接近输入词汇。基于语言模型的方法根据上下文或词频统计,选择最可能的正确拼写。本教程采用编辑距离算法实现一个简单有效的藏文拼写纠错工具,非常适合零基础学习者入门。编辑距离 (Edit Distance)插入(insert)删除(delete)替换(replace)བོད་→བོད距离是1(删除一个字符)。通过计算不同候选词汇到输入词汇的编辑距离,选取距离最短的作为正确拼写。
2025-05-07 18:58:14
423
原创 藏文助词标注器入门实践
本项目实现一个藏文自动格助词标注器输入一个藏文句子后,程序能自动识别句中的藏文助词,并标注出其对应的语法格位(如属格、方位格、施事格等)。属格(表示所属关系):གི、ཀྱི、གྱི、འི、ཡི方位格(表示地点或方位):ལ、ན、དུ、ཏུ、རུ、སུ施事格(表示动作的执行者):ས、གིས、ཀྱིས、གྱིས、ཡིས本项目会尝试自动把这些助词及其格位标注出来。CRF(条件随机场)是一种统计机器学习模型,专门用来处理序列标注问题。
2025-05-07 17:26:30
461
原创 藏语英语中文机器翻译入门实践
机器翻译(Machine Translation, MT)是人工智能中自然语言处理(NLP)的重要任务之一。基于规则的方法(早期):人工编写规则与词典。基于统计的方法:基于大量双语语料统计概率进行翻译。基于深度学习的方法(当前主流):序列到序列(Seq2Seq)模型:将源语言序列转换为目标语言序列。Transformer 模型:当前主流的深度学习模型,性能卓越。预训练模型:如Google的mT5、mBART,能快速上手进行机器翻译。
2025-05-02 20:39:56
1134
原创 藏文情感分析器入门学习实践
情感分析(Sentiment Analysis)是自然语言处理的一个重要应用,目的是自动识别和提取文本中的情感倾向。基于规则的方法使用情感词典,对句子进行简单判断(适合初学)。基于传统机器学习的方法使用分类算法,如支持向量机(SVM),通过特征工程进行分类。基于深度学习的方法使用神经网络模型(如BERT、LSTM),自动学习文本的深层次语义,准确度更高。我们本次项目使用简单易上手的规则词典方法进行演示,适合初学者理解和操作。
2025-05-02 19:29:34
448
原创 藏文文本自动分词工具学习实践
藏文是一种没有明显空格隔开的文字,因此需要专门的技术来进行分词。规则分词:根据特定语法规则,使用词典对文本分词。统计分词:利用统计模型,根据词语出现概率进行分词。深度学习分词:基于神经网络模型,通过大量训练数据自动学习分词规则。本教程使用简单易用的规则和字典混合方式的藏文分词工具pybo。
2025-05-02 17:02:38
750
原创 藏文词云生成器学习实践
词云(Word Cloud)将文本中的词根据出现频率可视化,频率越高的词,字体越大,常用于文本分析、舆情可视化。藏文处理难点藏文没有空格隔词,需分词。Python的wordcloud默认不支持藏文,要用适配的字体和适当预处理。关键技术wordcloud:生成词云图。matplotlib:展示词云图。pybo:藏文分词库。
2025-05-02 16:06:05
1085
原创 Transformer 零基础实践教程 - 1 - 前置知识简介
简单说,点积就是把两个向量对应位置的数相乘,然后全部加起来。点积是衡量两个向量“朝同一个方向”的程度。数值越大,它们越一致;越小,方向越不一致。# ❶ 生成两个随机向量并计算点积dot = a @ b # 或 np.dot(a, b)print("向量 a·b =", dot)# ❷ 迷你批矩阵乘法:B=4,输入特征 5,输出特征 2Y = X @ W # 形状 (4, 2)向量 a·b = 0.7253804190745706Y = X @ W练习 1-A手写函数。
2025-04-25 19:42:05
656
原创 《Dialogflow零基础入门教程》6 进阶使用 --上下文对话管理
点击Entities,新建实体,名称为food-item。披萨面条咖啡汉堡沙拉保存实体。测试效果用户:“我要点餐” → 上下文ordering启动。机器人:“您想吃点什么?用户:“一杯咖啡” → 自动识别food-item实体。
2025-04-22 09:28:02
613
原创 《Dialogflow零基础入门教程》5 实践案例2 -- 使用Webhook实现智能回复
Webhook的比喻想象Dialogflow是一个接待顾客的前台服务员,当顾客提出简单问题(比如询问营业时间),服务员(Dialogflow)自己就能直接回答。当顾客提出复杂问题(比如“今天有什么特价菜”),前台服务员需要跑到厨房(Webhook后端)去问厨师拿菜单,然后再告诉顾客。Webhook本质就是一种回调机制,Dialogflow通过它向你自己的程序(服务器)发送请求,由你的程序处理逻辑,然后再返回响应。Node.js:适合零基础,容易上手,语法简洁,社区活跃。Python。
2025-04-21 17:14:40
987
2
原创 《Dialogflow零基础入门教程》4 实践案例1-- 搭建简单聊天机器人
意图相当于用户向机器人提出的请求或问题,Dialogflow 通过识别用户输入的话来判断用户的目的是什么。“今天北京天气怎么样?“明天上海会下雨吗?这些句子的“意图”都是“查询天气”。实体是用户输入中关键的信息或参数。例如在“今天北京天气如何?”这句话里,“北京”就是实体,它代表用户要查询天气的地点。Dialogflow可以自动识别一些常用实体(如日期、城市等),也可以定义自己的实体。Dialogflow 提供了一个内置的模拟器工具,方便我们随时测试对话效果。
2025-04-21 14:22:43
1098
原创 《Dialogflow零基础入门教程》3 环境准备
成功拥有Google账号后,接下来你需要访问Dialogflow控制台,创建你的第一个聊天机器人项目。
2025-04-21 14:00:57
504
原创 《Dialogflow零基础入门教程》2 基本概念与原理
意图(Intent)可以理解为“用户想做什么”。比如用户说了一句话:“今天天气怎么样?”,这里用户的意图就是查询天气。用户说:“我想点一杯拿铁。意图:“点咖啡”(用户真正想做的事就是点咖啡。Dialogflow的核心功能就是识别用户表达的意图。训练短语(Training phrases):用户可能会说的话。响应(Responses):识别出意图后,机器人回复用户的话。意图(Intent)训练短语示例响应示例天气查询“今天的天气怎么样?”、“会不会下雨?“请告诉我您要查询哪个城市的天气?
2025-04-21 12:37:00
598
原创 《Dialogflow零基础入门教程》1 初识Dialogflow
人工智能聊天机器人(Chatbot)是一种能够和人类进行自然语言交流的软件程序。简单来说,它可以模仿人类的语言行为,通过识别和理解用户输入的文字或语音,实现自动化的沟通和互动。当你咨询快递状态时,聊天机器人可以直接告诉你快递到哪里了;当你访问购物网站时,机器人能够自动推荐商品并回答你的问题。这种技术的核心是自然语言处理(Natural Language Processing, NLP),它使计算机能理解、处理并回应人类的语言。
2025-04-21 12:34:19
628
原创 智能体(Intelligent Agents)入门自学教程 6 小项目:构建“猜数字”智能体
通过以上示例、变体代码和练习,你可以从跟着输入–输出流程,到自动化模拟、再到增加鲁棒性与性能分析,全面掌握这个“小项目”的设计与实现。high = 最大值。
2025-04-20 09:44:01
316
原创 智能体(Intelligent Agents)入门自学教程 5 引入搜索:迷宫逃脱
下面是一份完整的 Python 实现。拷贝到你的 Jupyter Notebook 中运行,观察输出和路径可视化。通过以上示例与练习,你将深刻理解搜索算法在智能体感知—决策—执行循环中的关键角色,并掌握实际编码与优化的方法。你可以在 Notebook 里,把路径用。标记,再打印一次迷宫,观察路线。
2025-04-19 19:17:34
452
原创 智能体(Intelligent Agents)入门自学教程 4 基于规则的智能体
基本思路规则系统由一组“如果 IF …,那么 THEN …感知环境(获取输入数据)规则匹配(检查哪些 IF 条件为真)动作执行(对满足条件的规则执行对应的 THEN 操作)规则结构IF <条件表达式> THEN <动作或结论>条件表达式:可包含多种感知变量,例如传感器读数、用户输入、环境状态等动作:可以是输出一条信息、调用一个函数、改变环境或更新内部状态规则引擎简易伪码… ]if cond(percept): # 条件匹配act(percept) # 执行动作。
2025-04-19 19:04:09
677
原创 智能体(Intelligent Agents)入门自学教程 3 简单反射型智能体(Reactive Agents)
感知–动作映射:智能体内部只有一组“条件→动作”规则(condition–action rules),没有内部状态或记忆。执行流程感知环境(Perceive):读取当前传感器输入匹配规则(Match):找到与当前感知相符的规则执行动作(Act):按规则指定的动作作用于环境优点:简单、易实现、计算开销低缺点:无法利用历史信息,容易陷入局部最优或循环。
2025-04-19 16:55:42
383
原创 智能体(Intelligent Agents)入门自学教程 2 感知–动作循环(Perception–Action Loop)
智能体的核心就在于不断地「感知环境 → 决策动作 → 执行动作」这个循环。下面从概念到示例再到动手练习,帮助你深刻理解并亲手实现。
2025-04-19 14:55:09
709
原创 智能体(Intelligent Agents)入门自学教程 1 引言与准备工作
定义智能体(Agent)是能够“感知”环境并“采取行动”以实现某种目标的实体。感知(Perception):通过传感器(Sensors)获取环境信息决策(Reasoning/Decision):根据感知信息与内部规则/模型做出选择执行(Action):通过执行器(Actuators)改变环境。
2025-04-19 11:13:58
366
原创 《AI赋能职场:大模型高效应用课》第8课 AI辅助职场沟通与协作
由于我方当前预算紧张,很遗憾无法接受此次价格调整。我们十分珍惜与贵公司的合作关系,期待未来在预算允许的条件下继续深化合作。根据你近期一次实际的工作会议,用AI工具生成一份详细的会议纪要,发送给参会人员并收集反馈。本季度整体业绩增长15%,线上渠道表现尤其突出,主要得益于社交媒体营销效果较好。发现主要问题为互动性不足,活动参与率偏低。提议增加短视频内容投入,加强用户互动体验,提高用户参与积极性。核对并微调细节,快速生成高质量的会议纪要。主题:2025年Q2季度市场营销复盘会议。
2025-04-18 20:19:47
1042
原创 《AI赋能职场:大模型高效应用课》第6课:AI短视频与多模态内容制作
通过AI短视频工具(剪映、腾讯智影),快速掌握视频自动生成、脚本设计与剪辑技巧,实现职场短视频的高效产出,提升内容营销和内部宣传的效果。演示工具:课上演示:例如职场宣传主题:使用 DeepSeek 或文心一言:课上演示:课上演示:以“新品发布会”为主题,现场实操制作一条30-60秒的宣传短视频,要求突出:通过本节课的学习,学员可以迅速上手AI视频制作工具,实现高效、专业的短视频创作,将所学技能直接应用于日常职场工作,感受AI工具赋能带来的实际效能提升。
2025-04-18 15:02:42
956
原创 《AI赋能职场:大模型高效应用课》第5课 AI设计工具与视觉内容创作
步骤1:美图AI设计快速入门步骤2:稿定设计视觉内容自动生成实操任务作业1:实战设计营销物料作业2:日常工作视觉设计优化通过本次课程,你将:
2025-04-17 16:01:55
668
原创 《AI赋能职场:大模型高效应用课》 第4课 高效设计之PPT极速生成
本次课程将带领你使用AI工具快速完成职场汇报PPT的创建,包括自动生成PPT大纲、智能配图、视频素材及音乐插入。将刚才DeepSeek生成的框架内容直接复制粘贴到提示框内,点击“生成PPT”通过以上详细教程,你能够迅速提升PPT制作技能,实现日常工作效率的飞跃式提升!AI自动生成带有基本样式和排版的PPT文件,可选择不同风格模板进行快速调整。AI自动推荐图片,选择适合的图片插入PPT中。例如:“2024年上半年市场活动总结”在美图AI设计内打开已生成的PPT文件。点击页面内“AI智能生成PPT”功能。
2025-04-17 12:28:26
1054
原创 《AI赋能职场:大模型高效应用课》第3课 AI赋能活动策划全流程
希望你能够独立或小组协作运用AI工具高效完成活动主题、流程设计及调查问卷制作,并能清晰地输出一套职场实用方案,具备直接应用于日常工作的能力。每组简短汇报方案,老师进行针对性点评,指出方案亮点及提升建议。确定调查问卷的目的,例如“周年庆活动意向调查问卷”。以实际职场案例为背景,例如:“公司周年庆活动”。现场微调AI生成的问题,更贴合企业实际。继续使用AI辅助生成详细的活动流程。现场讨论并投票决定最终主题。现场生成并共同完善活动流程。
2025-04-17 10:39:32
438
原创 《AI赋能职场:大模型高效应用课》第2课 提示词进阶训练与长文生成
通过深入掌握提示词技巧,使用AI工具快速生成高质量的长文报告、总结等职场文档,提升日常文案效率。使用工具:课前需求准备:准备实际工作中需要撰写的长篇报告或项目总结背景信息、数据、要点等。示例提示词:【步骤2】提示词进阶技巧目标:掌握提示词精细化表达,精准控制生成内容的风格、结构和侧重。进阶技巧介绍:进阶示例:长文生成流程:课堂案例演示:以“年度营销活动复盘报告”为例:整体结构:示例提示词:三、课后作业作业要求:选择你本周内实际工作中需完成的一篇长文类报告(例如项目总结、活动
2025-04-16 16:50:31
634
原创 《AI赋能职场:大模型高效应用课》第1课 智能创作入门
什么是AI智能创作?使用人工智能大模型自动生成文案、报告、演讲稿等内容。常用工具:DeepSeek、百度文心一言等。大幅节约撰写文案的时间。提升文案的质量与创意。降低重复劳动,提高工作效率。
2025-04-16 16:38:01
533
原创 微信小程序实战案例 - 餐馆点餐系统 阶段 4 - 订单列表 & 状态
【代码】微信小程序实战案例 - 餐馆点餐系统 阶段 4 - 订单列表 & 状态。
2025-04-13 15:28:49
959
原创 微信小程序实战案例 - 餐馆点餐系统 阶段1 - 菜单浏览
完成「首页=菜品分类 Tabs + 菜品卡片列表」里补充 3‑5 个分类、每类 4‑5 道菜。祝你编码愉快,继续加油!
2025-04-11 15:43:43
1222
原创 微信小程序实战案例 - 餐馆点餐系统 阶段 0 - 环境就绪
目标:把本地开发环境、云端资源和版本管理都准备好,并打上 v0.1‑init。⚠️ 测试号仅供开发调试,发布前需换成正式 AppID,否则无法上线。Tag,为后续 1‑5 阶段奠定基础。“同意并发送匿名数据”完成以上步骤,即宣告。
2025-04-10 19:58:31
625
原创 微信小程序基础开发实战 6 本地缓存与用户登录授权实战
本章通过实战演示了微信小程序的数据缓存机制、用户登录与授权流程,以及如何利用这些技术实现保存用户偏好设置,提升用户体验。:学习如何使用微信小程序提供的数据缓存机制,包括数据存储、读取和删除。:掌握微信小程序的登录流程,获取用户授权信息并使用登录接口获取。:结合数据缓存和用户授权机制,完成用户偏好设置的保存和恢复。
2025-04-06 16:55:54
380
原创 微信小程序基础开发实战 5 网络请求与数据交互实战
本章重点通过实战方式学习微信小程序如何实现网络请求与数据交互,掌握微信小程序内置网络API以及云函数的使用方法,最终完成一个可实际使用的天气预报小程序。
2025-04-06 10:06:05
1120
原创 微信小程序基础开发实战 4 JavaScript与数据绑定实战
本章深入实践了小程序中JavaScript与数据绑定的基本机制,提供了实用的电影评分短评案例,结合生命周期、事件处理、数据绑定三大核心内容,帮助你更好地理解小程序开发技巧。运行程序,查看开发工具控制台输出,以理解各生命周期函数执行时机。启动小程序,输入框输入内容时,文本实时显示输入内容。
2025-04-05 21:18:23
383
原创 微信小程序基础开发实战 2 页面结构与导航实战
本章我们将深入了解微信小程序的页面结构,并通过实战项目掌握页面管理、导航跳转及导航栏定制的方法。
2025-04-05 16:37:45
1000
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人