数据结构学习之平衡树与AVL篇(Java)

平衡树:对于任意一个节点,左子树和右子树的高度差不能超过1
平衡因子:任意一个节点左子树与右子树的高度差.
AVL树是平衡二叉树的一种,AVL树本身首先是一棵二叉搜索树。因为二分搜索树当插入的数据比较有规律时,二分搜索树最差的情况可能会退化为一个链表。就失去了使用这种数据结构来处理数据的意义。所以AVL这种自平衡二叉查找树就最先被发明出来了。AVL树也被称为高度平衡树,增加和删除可能需要通过一次或多次树旋转来重新平衡这个树。
使用java实现AVLTree:

import java.util.ArrayList;

/**
 * @author ymn
 * @version 1.0
 * @date 2020\6\2 0002
 */
public class AVLTree<K extends Comparable<K>,V> {

     private class Node{
         public K key;
         public V value;
         public Node left,right;
         public int height;

         public Node(K key,V value){
           this.key = key;
           this.value = value;
           left = null;
           right = null;
           height = 1;
         }
    }

    private Node root;
    private int size;

    public AVLTree(){
        root = null;
        size = 0;
    }

    public int getSize(){
        return size;
    }
    public boolean isEmpty(){
        return size == 0;
    }
    //判断该二叉树是否是一颗二分搜索树
    public boolean isBST(){
        //利用二分搜索树中序遍历的结果是二分搜索树中数据从小到大排列的结果
        ArrayList<K> keys = new ArrayList<>();
        inOrder(root,keys);
        for (int i = 1;i < keys.size(); i++){
            if (keys.get(i - 1).compareTo(keys.get(i)) > 0){
                return false;
            }
        }
        return true;
    }
    //中序遍历
    private void inOrder(Node node,ArrayList<K> keys){
        if (node == null)
            return;
        inOrder(node.left,keys);
        keys.add(node.key);
        inOrder(node.right,keys);
    }

    //判断该二叉树是否是一颗平衡二叉树
    public boolean isBalanced(){
        return isBalanced(root);
    }
    //判断以node为根的二叉树是否是平衡二叉树,递归算法
    private boolean isBalanced(Node node){
        if (node == null){
            return true;
        }
        int balanceFactor = getBalanceFactor(node);
        //Math.abs为取绝对值
        if (Math.abs(balanceFactor) > 1){
            return false;
        }
        return isBalanced(node.left) && isBalanced(node.right);
    }

    //对节点y进行右旋转操作,返回旋转后新的节点x
    private Node rightRotate(Node y){
        Node x = y.left;
        Node xRight = x.right;
        //向右旋转过程
        x.right = y;
        y.left = xRight;
        //更新height
        y.height = Math.max(getHeight(y.left),getHeight(y.right)) + 1;
        x.height = Math.max(getHeight(x.left),getHeight(x.right)) + 1;
        return x;
    }
    //对节点y进行左旋转操作,返回旋转后新的节点x
    private Node leftRotate(Node y){
        Node x = y.right;
        Node xLeft = x.left;
        //向左旋转处理
        x.left = y;
        y.left = xLeft;
        //更新height
        y.height = Math.max(getHeight(y.left),getHeight(y.right)) + 1;
        x.height = Math.max(getHeight(x.left),getHeight(x.right)) + 1;
        return x;
    }
    //获取节点的高度
    private int getHeight(Node node){
        if (node == null){
            return 0;
        }
        return node.height;
    }
    //获得节点的平衡因子
    private int getBalanceFactor(Node node){
      if (node == null){
          return 0;
      }
      return getHeight(node.left) - getHeight(node.right);
    }

    public void add(K key,V value){
        root = add(root,key,value);
    }

    //向以node为根的二分搜索树中插入元素(key,value),递归算法
    //返回插入新节点后二分搜索树的根
    private Node add(Node node,K key,V value){
        if(node == null){
            size ++;
            return new Node(key, value);
        }
        if (key.compareTo(node.key) < 0){
            node.left = add(node.left,key, value);
        }else if(key.compareTo(node.key) > 0){ //插入重复元素说明什么也不做
            node.right = add(node.right,key, value);
        }else {
            node.value = value;
        }
        //更新height
        node.height = 1 + Math.max(getHeight(node.left),getHeight(node.right));
        //计算平衡因子
        int balanceFactor = getBalanceFactor(node);
//        if (Math.abs(balanceFactor) > 1){
//            System.out.println("unbalanced" + balanceFactor);
//        }
        //平衡维护
        //LL
        if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0)
            return rightRotate(node);
        //RR
        if (balanceFactor < -1 && getBalanceFactor(node.right) <= 0)
            return leftRotate(node);
        //LR
        if(balanceFactor > 1 && getBalanceFactor(node.left) < 0) {
            //先对不平衡节点的左孩子进行左旋转
            node.left = leftRotate(node.left);
            //在进行一次右旋转
            return rightRotate(node);
        }
        //RL
        if (balanceFactor < -1 && getBalanceFactor(node.right) > 0){
            //先对不平衡节点的右孩子进行右旋转
            node.right = rightRotate(node.right);
            //在进行一次左旋转
            return leftRotate(node);
        }
        return node;
    }

    //返回以node为根节点的二分搜索树中,key所在的节点
    private Node getNode(Node node,K key){
        if (node == null){
            return null;
        }
        if (key.compareTo(node.key) == 0){
            return node;
        }else if (key.compareTo(node.key) < 0){
            return getNode(node.left,key);
        }else {   //key.compareTo(node.key) > 0
            return getNode(node.right,key);
        }
    }

    public boolean contains(K key){
        return getNode(root,key) != null;
    }

    public V get(K key){
        Node node = getNode(root,key);
        return node == null ? null : node.value;
    }

    public void set(K key, V value) {
        Node node = getNode(root,key);
        if (node == null){
            throw new IllegalArgumentException(key + "dose't exist!");
        }
        node.value = value;
    }

    //返回以node为根的二分搜索树的最小值所在的节点,递归算法
    private Node minimum(Node node){
        if (node.left == null){
            return node;
        }
        return minimum(node.left);
    }

    public V remove(K key){
        Node node = getNode(root,key);
        if (node != null){
            root = remove(root,key);
            return node.value;
        }
        return null;
    }

    //删除掉以node为根的二分搜索树中值为e节点,递归算法
    //返回删除节点后新的二分搜索树的根
    private Node remove(Node node,K key){
        if (node == null){
            return null;
        }
        Node returnNode;
        if (key.compareTo(node.key) < 0){
            node.left = remove(node.left,key);
            returnNode = node;
        }else if (key.compareTo(node.key) > 0){
            node.right = remove(node.right,key);
            returnNode = node;
        }
        else { //key == node.key
            //待删除节点左子树为空的情况
            if (node.left == null){
                Node rightNode = node.right;
                node.right = null;
                size --;
                returnNode = rightNode;
            }
            //待删除节点右子树为空的情况
            else if (node.right == null){
                Node leftNode = node.left;
                node.left = null;
                size --;
                returnNode = leftNode;
            }
            else {
                //待删除节点均不为空的情况
                //找到比待删除节点大的最小节点,即待删除节点右子树的最小节点(后继节点)。
                //或找到比待删除节点小的最大节点,即待删除节点左子树的最大节点(前驱节点)
                //用这个节点顶替待删除节点的位置
                Node successor = minimum(node.right);
                successor.right = remove(node.right, successor.key);
                successor.left = node.left;
                node.left = null;
                node.right = null;
                returnNode = successor;
            }
        }
        //如果删除节点后returnNode为空,比如删除的是叶子节点
        if (returnNode == null){
            return null;
        }
        //更新height
        returnNode.height = 1 + Math.max(getHeight(returnNode.left),getHeight(returnNode.right));
        //计算平衡因子
        int balanceFactor = getBalanceFactor(returnNode);
        //平衡维护
        //LL
        if (balanceFactor > 1 && getBalanceFactor(returnNode.left) >= 0)
            return rightRotate(returnNode);
        //RR
        if (balanceFactor < -1 && getBalanceFactor(returnNode.right) <= 0)
            return leftRotate(returnNode);
        //LR
        if(balanceFactor > 1 && getBalanceFactor(returnNode.left) < 0) {
            //先对不平衡节点的左孩子进行左旋转
            returnNode.left = leftRotate(returnNode.left);
            //在进行一次右旋转
            return rightRotate(returnNode);
        }
        //RL
        if (balanceFactor < -1 && getBalanceFactor(returnNode.right) > 0){
            //先对不平衡节点的右孩子进行右旋转
            returnNode.right = rightRotate(returnNode.right);
            //在进行一次左旋转
            return leftRotate(returnNode);
        }
        return returnNode;
    }
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值