深度学习中,Xavier初始化 是什么?

pytorch官方文档中提到了Xavier初始化,不解,查之。 

weights = torch.randn(784, 10) / math.sqrt(784)

 

      “Xavier”初始化方法是一种很有效的神经网络初始化方法,方法来源于2010年的一篇论文《Understanding the difficulty of training deep feedforward neural networks》

 

       文章主要的目标就是使得每一层输出的方差应该尽量相等。下面进行推导:每一层的权重应该满足哪种条件才能实现这个目标。

 

  我们将用到以下和方差相关的定理:

假设有随机变量x和w,它们都服从均值为0,方差为σ的分布,且独立同分布,那么:

•      w*x就会服从均值为0,方差为σ*σ的分布

•      w*x+w*x就会服从均值为0,方差为2*σ*σ的分布

 

  文章实验用的激活函数是tanh激活函数,函数形状如下左图,右图是其导数的函数形状。

 

       从上图可以看出,当x处于0附近时,其导数/斜率接近与1,可

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值