多模态大模型推理成本与效率双突破

近日,商汤科技推出“日日新SenseNovaV6”(以下简称“日日新V6”)系列多模态融合大模型。这是国内首个支持10分钟中长视频深度解析的大模型,也是首个支持长思维链的64K多模态模型,推理成本与效率双突破,让AI智能真正融入生活高频场景。

随着人工智能技术飞速发展,多模态模型作为能够同时理解和处理多种类型数据的技术,正逐渐成为AI领域的前沿方向。近一个月,百度“文心一言4.0”、字节“豆包大模型”纷纷强化多模态布局,MiniMax等创业公司也在语音、视频理解上快速突破。在业内看来,多模态正成为技术、商业和交互维度交汇的核心阵地。

多模态AI技术迭代

多模态大模型是基于深度学习的机器学习技术,其核心是将不同媒体数据(如文本、图像、音频和视频等)进行融合,通过学习不同模态之间的关联,实现更加智能化的信息处理。

图片

多模态大模型的优点在于能够充分利用不同媒体数据的信息,提取出更加丰富、全面的特征,从而提高模型的性能和泛化能力。此外,多模态大模型还可以通过学习不同模态之间的关联,进一步增强模型的语义理解和表达能力。

和以往发布的大模型相比,商汤科技本次推出的日日新V6通过多模态长思维链训练、全局记忆、强化学习的技术突破,形成领先的多模态推理能力,并突破成本边界。

从模型性能看,日日新V6在长思维链、推理、数理、全局记忆方面拥有显著优势,多模态推理能力国内第一,对标GPT-o1,数据分析能力大幅领先GPT-4o;高效能与低成本结合,多模态训练整体效率对齐语言训练实现业内最优水平,推理成本亦实现业界最低。

凭借“全局记忆”能力,日日新V6打破了传统模型仅支持短视频的限制,可支持10分钟级视频全帧率解析,对标Gemini2.5Turbo达到同类型最强。多维信息压缩是实现这一突破的重要技术,商汤科技自研的技术可以将视觉信息(画面)、听觉信息(语音、音效)、语言信息(字幕、口语)、时间轴逻辑进行对齐,并形成多模态统一时序表征。

伴随日日新V6的发布,商汤科技还同步推出实时交互融合大模型SenseNovaV6Omni。这一模型针对角色扮演、翻译点读、文旅导游、讲解绘本、数学讲解等场景进行了深度优化,同时实现轻量级的全模态交互模型升级,拥有国内最强的多模态交互能力。

商汤科技董事长兼首席执行官徐立表示:“AI之道,在于百姓之日用。商汤日日新V6将跨越多模态边界,释放推理与智能的无限可能。”

多模态大模型的突破,正快速激活各类新场景、新模式,比如席卷全球的GPT-4o“吉卜力风”、形态各异的AI机器人等,激发行业大量跨模态能力需求。打通从产品到多模态场景的端到端行业解决方案,是AI2.0时代新兴行业加速技术落地,传统行业实现数智升级的“快车道”。

目前,多模态AI已广泛应用于智能客服、智能家居、自动驾驶、医疗影像分析、教育娱乐等多个领域,成为推动各行业数字化转型的重要力量。

规模效率与成本平衡难题

中研普华产业研究院发布的《2025-2030年中国多模态AI行业市场深度调研与发展趋势报告》显示,随着人工智能技术的快速发展,多模态AI作为其中的重要分支,正逐渐成为中国AI市场的新热点。

2024年中国多模态AI市场规模已达到约150亿元,同比增长约30%。预计未来几年,随着技术的不断成熟与应用场景的拓展,中国多模态AI市场将继续保持高速增长态势,到2025年市场规模有望突破200亿元大关。

商汤科技尽管在多模态大模型、生成式AI、智慧城市等领域取得一定突破,但在行业竞争中仍面临多维度挑战,这些挑战既来自技术、市场、商业化层面,也涉及生态博弈。

3月26日,商汤科技发布2024年度财报,全年总营收37.72亿元,净亏损43.07亿元。自2018年以来,商汤科技已连续7年亏损,累计亏损额超过500亿元。高额研发投入虽推动技术突破,但短期内难以转化为盈利,资金链压力显著。

中国多模态AI市场竞争格局呈现出多元化竞争的特点。一方面,以百度、腾讯、阿里巴巴等为代表的互联网巨头凭借强大的技术实力、丰富的数据资源及完善的生态体系,在多模态AI领域占据领先地位。

另一方面,以商汤科技、云从科技、依图科技为代表的AI企业也通过技术创新与差异化竞争,在市场中占据一席之地。此外,还有一些传统行业企业开始布局多模态AI领域,试图通过数字化转型提升自身竞争力。

国际上,OpenAI的GPT系列模型是全球多模态模型领域的领先产品。该模型支持多模态交互与内容生成,能够生成更加自然、多样的文本、图像和语音内容。GPT系列模型的成功应用,为全球多模态模型行业的发展提供了重要的参考和借鉴。

语音内容。GPT系列模型的成功应用,为全球多模态模型行业的发展提供了重要的参考和借鉴。

大模型赛道风起云涌,当行业陷入“模型规模竞赛”和“C端流量争夺”时,商汤选择在亏损压力下聚焦多模态技术与垂直场景深度融合。然而,如何保持技术领先的同时实现盈利,也是AI企业能否在AI2.0时代持续领跑的关键。

如何学习AI大模型?

大模型的发展是当前人工智能时代科技进步的必然趋势,我们只有主动拥抱这种变化,紧跟数字化、智能化潮流,才能确保我们在激烈的竞争中立于不败之地。

那么,我们应该如何学习AI大模型?

对于零基础或者是自学者来说,学习AI大模型确实可能会感到无从下手,这时候一份完整的、系统的大模型学习路线图显得尤为重要。

它可以极大地帮助你规划学习过程、明确学习目标和步骤,从而更高效地掌握所需的知识和技能。

这里就给大家免费分享一份 2025最新版全套大模型学习路线图,路线图包括了四个等级,带大家快速高效的从基础到高级!

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
如果大家想领取完整的学习路线及大模型学习资料包,可以扫下方二维码获取
在这里插入图片描述
👉2.大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。(篇幅有限,仅展示部分)

img

大模型教程

👉3.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(篇幅有限,仅展示部分,公众号内领取)

img

电子书

👉4.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(篇幅有限,仅展示部分,公众号内领取)

img

大模型面试

**因篇幅有限,仅展示部分资料,需要的扫描下方二维码领取 **

在这里插入图片描述

<think>嗯,用户让我介绍一下多模态大模型的关键技术。我需要先回忆一下多模态相关的知识,然后组织出一个结构清晰的回答。首先,多模态大模型是处理多种类型数据(比如文本、图像、音频、视频)的模型,对吧?那关键技术应该包括模态融合、表示学习、对齐这些方面。 用户可能对多模态不太了解,所以需要从基础讲起。但用户也可能有一定的背景,所以需要深入关键技术点。首先得明确多模态大模型的定义,然后分点介绍各个关键技术。可能需要列举几个核心技术,比如模态对齐、跨模态表示、预训练方法、融合策略、知识蒸馏、多任务学习、生成模型、数据集和评估方法等。 接下来每个技术点需要详细说明。比如模态对齐,要解释为什么对齐重要,以及如何实现,比如使用对比学习或者注意力机制。跨模态表示可能需要提到共享的嵌入空间,像CLIP那样。预训练方法的话,像多任务预训练目标,比如掩码语言模型和图像重建的结合。 融合策略分早期、中期和晚期融合,需要简单说明每种方法的优缺点。知识蒸馏可能涉及如何用小模型来模仿大模型,处理多模态数据。多任务学习要说明不同任务如何相互促进。生成模型可能包括扩散模型或者GAN在多模态中的应用。数据集和评估方法部分,需要提到常用的数据集和评价指标,比如BLEU、CIDEr等。 还要注意用户提到的格式要求,比如数学表达式用$...$,独立公式用$$...$$,但用户的问题中没有数学内容,可能不需要太多公式。但如果有涉及的话,比如对比学习的损失函数,可能需要用LaTeX表示,比如$\mathcal{L}_{\text{对比}} = ...$。 另外,回答结构要清晰,分点列出关键技术,每个技术点下再分小点解释。可能需要用序号或者加粗标题来区分。确保用中文,语言简洁明了,帮助用户逐步理解。 需要检查是否有遗漏的关键技术,比如模态之间的转换、多模态推理能力,或者最新的技术进展。比如Transformer架构在多模态中的应用,像ViT和BERT的结合。还有模型架构的创新,如Flamingo或者GPT-4V这样的模型如何处理多模态输入。 还要考虑多模态应用的挑战,比如数据异构性、计算资源、模态缺失的鲁棒性,这些可能也需要提及,但用户主要问的是关键技术,所以可能放在最后作为挑战或未来方向。 最后确保每个部分都准确,没有技术错误。比如对比学习确实用于对齐,CLIP的共享嵌入空间是正确的例子。预训练任务如掩码模态建模是对的。生成模型中扩散模型的应用,如DALL-E和Stable Diffusion的例子。 总结一下,回答的结构应该是先定义多模态大模型,然后分点介绍关键技术,每个技术点详细说明,最后可能提一下挑战和应用,但用户的问题重点是关键技术,所以重点放在关键技术的介绍上。确保符合格式要求,不使用Markdown,用自然的中文分段落,结构清晰。</think>多模态大模型是能够处理并关联多种模态数据(如文本、图像、音频、视频等)的人工智能模型。其核心技术涉及**模态对齐、跨模态表示、联合建模**等方向,以下是关键技术点及实现原理的逐步解析: --- ### 一、模态对齐(Modality Alignment) **目标**:建立不同模态数据间的语义关联。 **关键技术**: 1. **对比学习(Contrastive Learning)** - 通过对比正负样本对,拉近相关模态(如图像-文本对)的嵌入距离,推开无关模态。 - 典型模型:CLIP(对比语言-图像预训练),其损失函数为: $$\mathcal{L}_{\text{对比}} = -\log \frac{e^{s(I,T)/\tau}}{\sum_{j=1}^N e^{s(I,T_j)/\tau}}$$ 其中$s(I,T)$为图像$I$文本$T$的相似度,$\tau$为温度系数。 2. **注意力机制对齐** - 使用跨模态注意力(Cross-Modality Attention)动态捕捉模态间依赖关系,例如将图像区域特征文本词向量关联。 --- ### 二、跨模态表示学习(Cross-Modal Representation) **目标**:将不同模态映射到统一的语义空间。 **实现方法**: 1. **共享嵌入空间(Shared Embedding Space)** - 通过编码器(如ViT处理图像、BERT处理文本)将不同模态映射到同一空间,使相似语义的跨模态数据靠近。 2. **模态转换(Modality Translation)** - 利用生成模型(如VAE、GAN)实现模态间转换,例如图像描述生成(Image Captioning)或文本生成图像(Text-to-Image)。 --- ### 三、多模态预训练(Multimodal Pre-training) **目标**:通过大规模数据预训练模型,学习通用跨模态能力。 **核心策略**: 1. **多任务预训练目标** - 联合训练掩码语言建模(MLM)、图像区域掩码(Masked Region Modeling)、跨模态匹配(Cross-Modal Matching)等任务。 2. **模型架构创新** - **单塔 vs 塔架构**:单塔(如FLAVA)直接融合多模态输入;塔(如CLIP)分别编码后对齐。 - **Transformer扩展**:在标准Transformer中增加跨模态注意力层(如Flamingo模型的感知器-重采样器模块)。 --- ### 四、模态融合(Modality Fusion) **目标**:有效整合多模态信息进行推理。 **融合策略**: 1. **早期融合(Early Fusion)** - 在输入层直接拼接多模态特征,适合强相关模态(如视频+音频)。 2. **晚期融合(Late Fusion)** - 各模态独立处理后再融合结果,适合异构模态(如文本+传感器数据)。 3. **动态融合(Dynamic Fusion)** - 根据输入内容自适应调整融合权重(如使用门控机制)。 --- ### 五、知识蒸馏高效推理 **挑战**:多模态模型参数量大,计算成本高。 **解决方案**: 1. **跨模态知识蒸馏** - 将大模型的知识迁移到轻量化模型中,保持多模态理解能力。 2. **模型压缩技术** - 量化(Quantization)、剪枝(Pruning)等技术降低推理成本。 --- ### 六、多模态生成技术 **应用场景**:文本生成图像(DALL·E)、视频生成(Make-A-Video)等。 **核心技术**: 1. **扩散模型(Diffusion Models)** - 通过逐步去噪过程生成高质量多模态数据(如Stable Diffusion)。 2. **条件式生成** - 使用交叉注意力机制将文本条件注入图像生成过程。 --- ### 七、数据集评估方法 1. **关键数据集**: - MS-COCO(图像-文本对)、HowTo100M(视频-语音-文本)、AudioSet(音频-标签)。 2. **评估指标**: - 检索任务:Recall@K、MRR;生成任务:BLEU、CIDEr、FID。 --- ### 挑战未来方向 1. **模态缺失鲁棒性**:处理实际场景中部分模态缺失的问题。 2. **细粒度对齐**:实现实体级(如物体-词语)而非样本级的对齐。 3. **因果推理**:超越相关性学习,实现多模态因果推理多模态大模型正推动AI向更接近人类认知的方向发展,但其技术落地仍需突破计算效率、可解释性等瓶颈。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值