Jointly Learning Explainable Rules for Recommendation with Knowledge Graph
ABSTRACT
构建推荐系统的两个关键层面
- 可解释性
- 有效性
与先前提出做推荐的方法比较
-
基于神经网络嵌入方法
缺点:大多数无法给出可解释的推荐结果
-
基于图形的方法
eg.基于元路径的模型。需要人工干预和领域知识定义模式和规则,而且忽略了项目关联类型
提出一种新的联合学习框架目的
将知识图中可解释规则的归纳与规则引导神经推荐模型的构建相结合。
该框架鼓励两个模块相互补充,以产生有效和可解释的推荐。
通过将项目名称链接到相关实体生成的知识图谱,新提出的模型产生很好的效果。
INTRODUCTION
推荐系统具有可解释性的好处
提高推荐系统的有效性,效率,说服力,透明度和用户满意度
具有可解释性的两种推荐算法
-
基于用户的推荐算法
受数据稀疏性的困扰,如果用户缺少社交信息,就很难给出明确的推荐理由。
-
基于评论的推荐算法
受数据稀疏性的困扰,如果商品缺少用户评论,很难给出明确的推荐