Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

本文提出了一种新的联合学习框架RulerRec,旨在将知识图谱中可解释的规则归纳与规则引导的神经推荐模型相结合,以生成有效且可解释的推荐。通过将项目映射到知识图,模型能够利用项目间的多跳关系路径总结出规则,提高了推荐的准确性和透明度。实验表明,该框架在现实世界数据集上的表现优秀。
摘要由CSDN通过智能技术生成

Jointly Learning Explainable Rules for Recommendation with Knowledge Graph

ABSTRACT

构建推荐系统的两个关键层面

  • 可解释性
  • 有效性

与先前提出做推荐的方法比较

  • 基于神经网络嵌入方法

    缺点:大多数无法给出可解释的推荐结果

  • 基于图形的方法

    eg.基于元路径的模型。需要人工干预和领域知识定义模式和规则,而且忽略了项目关联类型

提出一种新的联合学习框架目的

将知识图中可解释规则的归纳与规则引导神经推荐模型的构建相结合。
该框架鼓励两个模块相互补充,以产生有效和可解释的推荐。
通过将项目名称链接到相关实体生成的知识图谱,新提出的模型产生很好的效果。

INTRODUCTION

推荐系统具有可解释性的好处

提高推荐系统的有效性,效率,说服力,透明度和用户满意度

具有可解释性的两种推荐算法

  • 基于用户的推荐算法

    受数据稀疏性的困扰,如果用户缺少社交信息,就很难给出明确的推荐理由。

  • 基于评论的推荐算法

    受数据稀疏性的困扰,如果商品缺少用户评论,很难给出明确的推荐

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值