Reinforced Negative Sampling over Knowledge Graph for Recommendation

Reinforced Negative Sampling over Knowledge Graph for Recommendation

ABSTRACT

合理的处理缺失数据在推荐系统中是的一个根本挑战。 目前的大多数工作都是从未观察到的数据中进行负采样,以提供带有负信号的推荐模型训练 。 然而,现有的负采样策略,无论是静态的还是自适应的,都不足以产生高质量的负样本-这既有助于模型训练,也有助于反映用户真实的需求。
在这项工作中,我们假设项目知识图(KG),它提供了项目和KG实体之间的丰富关系,可以用来推断信息和真实的负样本。
开发了一种新的负采样模型-知识图策略网络(K GPolicy),它作为一种强化学习智能体来探索高质量的负样本。 具体来说,通过进行我们设计的探索操作,它从用户项目正项交互中导航,自适应地接收知识感知的负信号,并最终产生一个负项目训练推荐系统。 我们在装有KGPolicy的矩阵分解模型上进行了测试。

INTRODCTION

推荐系统已广泛应用于实际应用中,以提高用户满意度和参与度。 从历史用户-项目交互中训练推荐模型,正例和负例的用户反馈,被要求以确保模型生成合理的个性化排序[13,23,33]。 然而,大多数互动都是以隐反馈的形式进行的,例如点击和购买,这只提供信号的正反馈。 这就给推荐模型学习带来了根本的挑战—如何从仅有正例数据中提取负例数据-这也被称为一类问题。
由于负面信号潜伏在未观察到的数据中,一个普遍的解决方案是执行负采样,这比将所有未观察到的相互作用视为负例更有效。 现有的负采样策略可分为三种类型:静态采样器、自适应采样器和具有额外行为的增强采样器。然而,每种方法都有一些固有的局限性。
鉴于负采样的基本作用和现有方法的局限性,我们在本工作中将重点放在负采样上,旨在通过引入其他类型的数据来提高其质量.高质量的负采样应该满足两个要求:1)信息性,这意味着目前的模型对它们的评分相对较高,因此将它们更新为负例将会我显著地改变模型参数,2)事实,这意味着它们是真正的负例,即用户以前知道它们(通过系统或其他方式暴露),但没有选择它们.由于自适应采样器可以实现对信息的要求,关键的挑战在于从缺失的数据中发现真实的负例,这些数据本质上缺乏真实性。
在这项工作中,我们假设知识图(KG),它引入了项目和现实世界实体之间的额外关系(来自项目属性或外部知识),可以从未观察到的数据中推断真实的负例。虽然将KG纳入推荐中最近得到了广泛的研究,但这些研究只利用KG建立预测模型,以前的工作没有使用它来增强负采样器。
为此,我们提出了一种新的负采样模型KGPolicy(简称知识图策略网络),该模型采用强化学习(RL)代理来探索KG以发现高质量的负采样。核心是设计的探索操作,它从用户项正例探索,选择两个顺序邻居(例如,一个KG实体和一个项目)访问。 这样的两跳路径可以捕捉到知识感知负例。为了实现这一目标,我们设计了一个邻居注意力模块,该模块指定了以正例用户项对为条件的一跳和两跳邻居的不同重要性,以便自适应地捕获对KG实体的偏好,并产生潜在的项目。 通过递归地进行这种探索&

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值