熔断、降级、限流简介
什么是熔断
什么是降级
什么是限流
Sentinel简介
Sentinel 具有以下特征:
Sentinel围绕着两个词,就是资源和规则
资源:
资源是 Sentinel 的关键概念。它可以是 Java 应用程序中的任何内容,例如,由应用程序提供的服务,或由应用程序调用的其它应用提供的服务,甚至可以是一段代码。
只要通过 Sentinel API 定义的代码,就是资源,能够被 Sentinel 保护起来。大部分情况下,可以使用方法签名,URL,甚至服务名称作为资源名来标示资源。
规则:
围绕资源的实时状态设定的规则,可以包括流量控制规则、熔断降级规则以及系统保护规则。所有规则可以动态实时调整。
Sentinel 功能和设计理念
什么是流量控制
流量控制在网络传输中是一个常用的概念,它用于调整网络包的发送数据。然而,从系统稳定性角度考虑,在处理请求的速度上,也有非常多的讲究。任意时间到来的请求往往是随机不可控的,而系统的处理能力是有限的。我们需要根据系统的处理能力对流量进行控制。Sentinel 作为一个调配器,可以根据需要把随机的请求调整成合适的形状,如下图所示:
流量控制设计理念
流量控制有以下几个角度:
- 资源的调用关系,例如资源的调用链路,资源和资源之间的关系;
- 运行指标,例如 QPS、线程池、系统负载等;
- 控制的效果,例如直接限流、冷启动、排队等。
Sentinel 的设计理念是让您自由选择控制的角度,并进行灵活组合,从而达到想要的效果。
熔断降级
什么是熔断降级
除了流量控制以外,及时对调用链路中的不稳定因素进行熔断也是 Sentinel 的使命之一。由于调用关系的复杂性,如果调用链路中的某个资源出现了不稳定,可能会导致请求发生堆积,进而导致级联错误。
Sentinel 和 Hystrix 的原则是一致的: 当检测到调用链路中某个资源出现不稳定的表现,例如请求响应时间长或异常比例升高的时候,则对这个资源的调用进行限制,让请求快速失败,避免影响到其它的资源而导致级联故障。
熔断降级设计理念
在限制的手段上,Sentinel 和 Hystrix 采取了完全不一样的方法。
Hystrix 通过 线程池隔离 的方式,来对依赖(在 Sentinel 的概念中对应 资源)进行了隔离。这样做的好处是资源和资源之间做到了最彻底的隔离。缺点是除了增加了线程切换的成本(过多的线程池导致线程数目过多),还需要预先给各个资源做线程池大小的分配。
Sentinel 对这个问题采取了两种手段:
- 通过并发线程数进行限制
和资源池隔离的方法不同,Sentinel 通过限制资源并发线程的数量,来减少不稳定资源对其它资源的影响。这样不但没有线程切换的损耗,也不需要您预先分配线程池的大小。当某个资源出现不稳定的情况下,例如响应时间变长,对资源的直接影响就是会造成线程数的逐步堆积。当线程数在特定资源上堆积到一定的数量之后,对该资源的新请求就会被拒绝。堆积的线程完成任务后才开始继续接收请求。
- 通过响应时间对资源进行降级
除了对并发线程数进行控制以外,Sentinel 还可以通过响应时间来快速降级不稳定的资源。当依赖的资源出现响应时间过长后,所有对该资源的访问都会被直接拒绝,直到过了指定的时间窗口之后才重新恢复。
系统自适应保护
Sentinel 同时提供系统维度的自适应保护能力。防止雪崩,是系统防护中重要的一环。当系统负载较高的时候,如果还持续让请求进入,可能会导致系统崩溃,无法响应。在集群环境下,网络负载均衡会把本应这台机器承载的流量转发到其它的机器上去。如果这个时候其它的机器也处在一个边缘状态的时候,这个增加的流量就会导致这台机器也崩溃,最后导致整个集群不可用。
针对这个情况,Sentinel 提供了对应的保护机制,让系统的入口流量和系统的负载达到一个平衡,保证系统在能力范围之内处理最多的请求。
Sentinel 是如何工作的
Sentinel 的主要工作机制如下:
- 对主流框架提供适配或者显示的 API,来定义需要保护的资源,并提供设施对资源进行实时统计和调用链路分析。
- 根据预设的规则,结合对资源的实时统计信息,对流量进行控制。同时,Sentinel 提供开放的接口,方便您定义及改变规则。
- Sentinel 提供实时的监控系统,方便您快速了解目前系统的状态。
参考:主页 · alibaba/Sentinel Wiki · GitHub
Spring-Boot整合Sentinel进行服务的限流、熔断、降级
首先导入Maven依赖
<dependency> <groupId>com.alibaba.cloud</groupId> <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId> <version>对应cloud版本号</version> </dependency><dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-actuator</artifactId> <version>2.2.0.RELEASE</version> </dependency>
自定义流量过大后返回类型的配置 - SeckillSentinelConfig
@Configuration
public class SeckillSentinelConfig {
public SeckillSentinelConfig(){
WebCallbackManager.setUrlBlockHandler(new UrlBlockHandler() {
@Override
public void blocked(HttpServletRequest httpServletRequest, HttpServletResponse httpServletResponse, BlockException e) throws IOException {
R error = R.error(BizCodeEnume.TOO_MANY_REQUEST.getCode(), BizCodeEnume.TOO_MANY_REQUEST.getMsg());
httpServletResponse.setCharacterEncoding("UTF-8");
httpServletResponse.setContentType("application/json");
httpServletResponse.getWriter().write(JSON.toJSONString(error));
}
});
}
}
properties配置项
spring.cloud.sentinel.transport.dashboard=localhost:8080 feign.sentinel.enabled=true management.endpoints.web.exposure.include=* spring.cloud.sentinel.transport.port=8719
在sentinle官网下载对应maven导入的版本的sentinel,然后 直接运行下载的jar包
使用默认账号:sentinel 默认密码:sentinel 进行登录
登陆后即可看到加载了sentinel监控的服务的各个接口的流量情况
流控:
(通过界面创建的规则,重启服务后就会失效)
Spring-Cloud-Alibaba-Gateway 网关整合Sentinel
先导入对应依赖
<dependency> <groupId>com.alibaba.cloud</groupId> <artifactId>spring-cloud-alibaba-sentinel-gateway</artifactId> <version>对应ALlibaba cloud版本</version> </dependency><dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-actuator</artifactId> <version>2.2.0.RELEASE</version> </dependency><dependency> <groupId>com.alibaba.cloud</groupId> <artifactId>spring-cloud-starter-alibaba-sentinel</artifactId> <version>对应ALlibaba cloud版本</version> </dependency>
给指定服务添加流控规则
测试流控规则:
成功:
失败:
定制网关流控的返回,毕竟这一串英文还是不太直观:
@Configuration
public class SentinelGatewayConfig {
public SentinelGatewayConfig(){
GatewayCallbackManager.setBlockHandler(new BlockRequestHandler() {
//网关限流了请求,就会调用此回调 Mono Flux
@Override
public Mono<ServerResponse> handleRequest(ServerWebExchange serverWebExchange, Throwable throwable) {
R error = R.error(BizCodeEnume.TOO_MANY_REQUEST.getCode(),BizCodeEnume.TOO_MANY_REQUEST.getMsg());
String errJson = JSON.toJSONString(error);
Mono<ServerResponse> body = ServerResponse.ok().body(Mono.just(errJson), String.class);
return body;
}
});
}
}
总结
服务的流量控制很重要,可以利用这些成熟的中间件来进行嵌入。