Python 中结构化数组的构建与处理

#structured data
name = ['a','b','c','d']
age = [12,23,34,45]
weight = [34,45,56,67]

import numpy as np

x = np.zeros(4, dtype=int) 

# 使用结构化数组的复合数据类型
data = np.zeros(4, dtype={'names':('name', 'age', 'weight'),'formats':('U10', 'i4', 'f8')})
# U-->Unicode   i-->integer   f-->float
#'U10'表示“最大长度为 10 的 Unicode 字符串”,'i4'表示 4 字节(即 32 位)整数,'f8'表示 8 字节(即 64 位)浮点数。
print(data.dtype)

data['name'] = name
data['age'] = age
data['weight'] = weight

#filtering of numpy array
#过滤出年龄小于30岁的人
data[data['age']<30]['name']

[(‘name’, ‘<U10’), (‘age’, ‘<i4’), (‘weight’, ‘<f8’)]
array([‘a’, ‘b’], dtype=’<U10’)
参考:数据科学 IPython 笔记本 9.11 结构化数据:NumPy 的结构化数组

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值