#structured data
name = ['a','b','c','d']
age = [12,23,34,45]
weight = [34,45,56,67]
import numpy as np
x = np.zeros(4, dtype=int)
# 使用结构化数组的复合数据类型
data = np.zeros(4, dtype={'names':('name', 'age', 'weight'),'formats':('U10', 'i4', 'f8')})
# U-->Unicode i-->integer f-->float
#'U10'表示“最大长度为 10 的 Unicode 字符串”,'i4'表示 4 字节(即 32 位)整数,'f8'表示 8 字节(即 64 位)浮点数。
print(data.dtype)
data['name'] = name
data['age'] = age
data['weight'] = weight
#filtering of numpy array
#过滤出年龄小于30岁的人
data[data['age']<30]['name']
[(‘name’, ‘<U10’), (‘age’, ‘<i4’), (‘weight’, ‘<f8’)]
array([‘a’, ‘b’], dtype=’<U10’)
参考:数据科学 IPython 笔记本 9.11 结构化数据:NumPy 的结构化数组