import cv2 as cv
def access_pixels2(image):
print(image.shape)
height = image.shape[0]
width = image.shape[1]
channels = image.shape[2]
print("width : %s, height : %s channels : %s"%(width, height, channels))
#上面输出图片的高宽通道数
for row in range(height):
for col in range(width):
for c in range(channels):
pv = image[row, col, c]
image[row, col, c] = 255 - pv
cv.imshow("pixels_demo", image)
src = cv.imread('D:\\tu\\1.jpg')
cv.namedWindow('input_image', cv.WINDOW_AUTOSIZE)
cv.imshow("image_input",src)
t1 = cv.getTickCount()
access_pixels2(src)
t2 = cv.getTickCount()
#getTickCount()函数:它返回从操作系统启动到当前所经的计时周期数。
time = (t2 - t1)/cv.getTickFrequency()
#getTickFrequency()函数:返回CPU的频率,
print("time : %s ms" % (time*1000))
print("time : %ms"%())
cv.waitKey(0)
cv.destroyAllWindows()
图片的高宽通道数和图片加载一共运行了多长时间
最新推荐文章于 2024-04-16 00:30:00 发布
本文演示了如何使用Python和OpenCV库访问和修改图像的像素值,并展示了如何测量像素操作的执行时间。通过遍历图像的每个像素并反转其颜色值,实现了基本的图像负片效果,同时利用OpenCV的计时函数计算了该操作的耗时。
摘要由CSDN通过智能技术生成