增量学习三个场景的理解

1、任务增量学习

(1)不同时刻到达的数据属于不同任务,不同任务里面的类别也各不相同(同一任务数据全部到达)。

        例如:

任务 类别
任务1 {类1:“0”,类2:“1”}
任务2

{类3:“2”,类4:“3”}

任务3 {类5:“4”,类6:“5”}

在识别数字“0”时,已经知道为任务1的数据,需要得出是属于在任务1的哪个类别。

(2)输出单元——多头。

        一个任务一个输出单元。

2、域增量学习

(1)不同时刻到达的数据属于同一任务的相同类别。

        例如:

任务 类别
任务1 {类1:“0”,类2:“1”}
任务1

{类1:“2”,类2:“3”}

任务1 {类1:“4”,类2:“5”}

在识别数字“

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值