1、任务增量学习
(1)不同时刻到达的数据属于不同任务,不同任务里面的类别也各不相同(同一任务数据全部到达)。
例如:
任务 | 类别 |
任务1 | {类1:“0”,类2:“1”} |
任务2 | {类3:“2”,类4:“3”} |
任务3 | {类5:“4”,类6:“5”} |
在识别数字“0”时,已经知道为任务1的数据,需要得出是属于在任务1的哪个类别。
(2)输出单元——多头。
一个任务一个输出单元。
2、域增量学习
(1)不同时刻到达的数据属于同一任务的相同类别。
例如:
任务 | 类别 |
任务1 | {类1:“0”,类2:“1”} |
任务1 | {类1:“2”,类2:“3”} |
任务1 | {类1:“4”,类2:“5”} |
在识别数字“