【POJ1321】棋盘问题(dfs)

Description

在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。

Input

输入含有多组测试数据。
每组数据的第一行是两个正整数,n ,k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。

Output

对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。

Sample Input

2 1
#.
.#
4 4
…#
…#.
.#…
#…
-1 -1

Sample Output

2
1

思路

类似八数码,详情见代码

代码

#include <iostream>
#include <cstring>
using namespace std;

char mat[10][10]; //保存地图
int vis[10]; //记录这一列是否有棋子
int cnt=0; //记录方法总数
int n,k; 

//从第x行开始,摆放y个棋子
void dfs(int x, int y)
{
    //遍历这一行的每一列
    for(int i=1;i<=n;i++)
    {
        //如果这一列可以摆放棋子
        if(mat[x][i]=='#' && !vis[i])
        {
            if(y==1){
                cnt++;
                return ;
            }
            else
            {
                vis[i]=1;//这一格摆上棋子
                //从下一行开始,摆y-1个棋子
                for(int j=x+1;j<=n-y+2;j++)
                    dfs(j,y-1);
                vis[i]=0;//回溯
            }
        }
    }
    return;
}

int main()
{
    while(cin>>n>>k &&n>0)
    {
        cnt=0;
        memset(vis,0,sizeof(vis));
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                cin>>mat[i][j];

        for(int i=1;i<=n-k+1;i++)
            dfs(i,k); 
        cout<<cnt<<endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值