Description
在一个给定形状的棋盘(形状可能是不规则的)上面摆放棋子,棋子没有区别。要求摆放时任意的两个棋子不能放在棋盘中的同一行或者同一列,请编程求解对于给定形状和大小的棋盘,摆放k个棋子的所有可行的摆放方案C。
Input
输入含有多组测试数据。
每组数据的第一行是两个正整数,n ,k,用一个空格隔开,表示了将在一个n*n的矩阵内描述棋盘,以及摆放棋子的数目。 n <= 8 , k <= n
当为-1 -1时表示输入结束。
随后的n行描述了棋盘的形状:每行有n个字符,其中 # 表示棋盘区域, . 表示空白区域(数据保证不出现多余的空白行或者空白列)。
Output
对于每一组数据,给出一行输出,输出摆放的方案数目C (数据保证C<2^31)。
Sample Input
2 1
#.
.#
4 4
…#
…#.
.#…
#…
-1 -1
Sample Output
2
1
思路
类似八数码,详情见代码
代码
#include <iostream>
#include <cstring>
using namespace std;
char mat[10][10]; //保存地图
int vis[10]; //记录这一列是否有棋子
int cnt=0; //记录方法总数
int n,k;
//从第x行开始,摆放y个棋子
void dfs(int x, int y)
{
//遍历这一行的每一列
for(int i=1;i<=n;i++)
{
//如果这一列可以摆放棋子
if(mat[x][i]=='#' && !vis[i])
{
if(y==1){
cnt++;
return ;
}
else
{
vis[i]=1;//这一格摆上棋子
//从下一行开始,摆y-1个棋子
for(int j=x+1;j<=n-y+2;j++)
dfs(j,y-1);
vis[i]=0;//回溯
}
}
}
return;
}
int main()
{
while(cin>>n>>k &&n>0)
{
cnt=0;
memset(vis,0,sizeof(vis));
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
cin>>mat[i][j];
for(int i=1;i<=n-k+1;i++)
dfs(i,k);
cout<<cnt<<endl;
}
return 0;
}