- 博客(48)
- 收藏
- 关注
原创 Word中使用Aurora添加伪代码
本文介绍了在Word中添加LaTeX风格伪代码的方法。首先需要安装MikTex系统和Aurora公式编辑器,然后配置必要的字体和LaTeX包。文章提供了详细的安装步骤图示,并给出了包含中英文支持的伪代码LaTeX模板代码示例,展示了最终实现效果。通过这套方案,用户可以在Word中实现类似LaTeX的自动伪代码生成功能。
2025-12-19 15:03:05
247
原创 Python启发式综合研究报告
本文展示了5张截图,内容涉及CSDN博客平台的技术文章配图。图片包含代码片段、系统架构图等技术内容,可能来自编程教程或解决方案类文章。所有图片均采用.png格式,通过https://i-blog.csdnimg.cn图床直接引用,保持了较好的清晰度和加载速度。这些配图作为技术文章的视觉辅助,有助于读者更直观地理解文章阐述的技术概念和实现方法。
2025-11-15 23:00:53
72
原创 Pycharm远程调用Autodl进行训练(关机后不影响)
本文介绍了如何在Linux服务器上使用tmux工具实现程序后台持久化运行。首先通过sudo apt install tmux安装tmux,然后使用tmux new -s session_name创建新会话。在会话中激活Python环境并运行脚本后,按Ctrl+B+D组合键分离会话,使程序在后台持续运行。需要查看时,使用tmux attach -t session_name重新连接会话。这种方法可以确保关闭终端后程序仍保持运行,特别适合长时间任务。
2025-11-10 21:49:45
473
原创 基于AutoDL市场下的Pycharm远程控制
本文主要介绍了如何配置远程开发环境并上传大型数据集。首先,建议将显卡设置为无卡模式以节省资源。接着,使用PyCharm专业版进行环境配置,通过SSH指令登录远程服务器,并设置同步文件夹路径。成功创建远程环境后,可以通过测试文件验证配置。对于大型数据集的上传,推荐使用FileZilla工具,选择SFTP协议进行数据传输,并通过相对路径调用数据。整个过程旨在帮助开发者高效配置远程开发环境并处理大型数据集。
2025-05-20 16:55:02
610
原创 copy---------
https://blog.csdn.net/HuangJM3/article/details/123685177?fromshare=blogdetail&sharetype=blogdetail&sharerId=123685177&sharerefer=PC&sharesource=qq_36714950&sharefrom=from_link
2024-10-12 10:01:19
157
原创 热轧板轧钢工艺的相关要点分析
热轧板作为一种半成品,需要经过粗轧、精轧等工序才能转变为成品钢材,具体轧钢工艺流程如图1 所示。从图1 中可以看出,热轧板半成品经过加热、除磷、粗轧等工序后,被直接送入精轧机,在精轧工序中,热轧板在多次反复挤压的作用下,热轧板自身的结构将发生改变,板材变得越来越薄;然后根据用户的需求,由终端操作人员对整个生产线进行远程智能化控制,生产出规格尺寸、板材样式符合用户需求的成品。
2024-07-27 10:23:57
1775
原创 jupyter之plt 画图弹出窗口展示图片以及静态图片切换方法
matplotlib notebook:在这个模式下会在notebook中产生一个绘图窗口,能够对图片进行放大缩小等操作。在python的Jupyter Notebook中,使用matplotlib绘制动态图形时,可能出现只显示一张静态图像。想要显示动态图像,只要把图片显示的窗口变成弹出式窗口即可。%matplotlib auto:在这个模式下会弹出一个单独 的绘图窗口,和在pycharm中一样。%matplotlib inline:这是默认的模式,输出的图片是静态的。
2024-05-30 10:03:21
3069
1
原创 【深度强化学习】深度Q网络求解倒立摆问题+Pytorch代码(1)
广泛地讲,强化学习是机器通过与环境交互来实现目标的一种计算方法。机器和环境的一轮交互是指,机器在环境的一个状态下做一个动作决策,把这个动作作用到环境当中,这个环境发生相应的改变并且将相应的奖励反馈和下一轮状态传回机器。这种交互是迭代进行的,机器的目标是最大化在多轮交互过程中获得的累积奖励的期望。强化学习用**智能体(agent)**这个概念来表示做决策的机器。''' 经验回放池 '''self.buffer = collections.deque(maxlen=capacity) # 队列,先进先出。
2024-05-18 22:35:31
805
原创 传染病模型SIR及其变体(python版本)
感染者每天会感染一定的数量的易感者,同时每天会有一定数量的感染者康复(或者死亡),而且他们康复之后不可能再次被感染(拥有了抗体)。感染者每天会感染一定的数量的易感者,同时每天会有一定数量的感染者康复(或者死亡),而且他们康复之后不可能再次被感染(拥有了抗体)。在SEIJR模型中存在五种人:易感者,潜伏者,感染者(指患病的但未被确诊的人),确诊者,康复者(含死亡者)。感染者每天会感染一定的数量的易感者,同时每天会有一定数量的感染者康复,但是他们康复之后依然有可能被感染。采取隔离措施后r较大;
2024-04-24 21:03:56
2064
原创 张老师语录
(6)做项目不要只说方法介绍,而是根据此方法得到了一些什么结果,更多的是分析。(4)在定义中的一些参数符号,不要直接赋值,而是在实验中进行说明。(5)方法也要起名字,不要直接给一个“方法一”类似的。(3)一个文档中的定义是连续的。(1)整体文章的必须有题目。(2)必须要有问题描述。
2024-04-08 17:11:32
430
原创 第8节课------列生成与分支定价法
到目前为止,还只是解决了 LMP 问题,这还是个线性规划问题,并不是最开始的整数规划问题。用启发式的方法,向上取整,从LMP 到 P2,约束仍然成立,这时才是个整数解。来动态地生成新的变量(或称列),这些新变量有可能改进主问题的解。原问题新添加的这一列可以通过对偶问题的行来计算。列,构造一个确定的Lp问题,称为受限的Lp问题(对于原来的LMP问题,因为原问题的行数。”的主问题,并通过解决一系列相关的。通过迭代的方式来构建和解决一个“是固定的,我们可以先选择。
2024-03-17 15:07:13
759
原创 第七课-----分支切平面
最终将可行域不断变小,相当于搜索空间变小。在LP中讲过,一个等式约束就等价于一个超平面,一个不等式约束就代表一个半空间,从这个意义上讲,割平面法的目的是通过添加很多割平面,把P进行切割到最后恰好等于conv(X),割平面方法的基本思想是对于一个优化问题而言,通过不断添加。这是解LP就可以得到原来IP问题的解了。所以在割平面中,我们不能切掉原问题的可行解。是X,对应的线形松弛问题的。,P肯定是比X大的一。
2024-03-16 22:04:37
553
原创 第六节课------分支定界法
首先需要引出一个问题,既然我们有了前面讲解的单纯形法以及对偶单纯形法,那分支定界法是,同时这个方法呢,其?首先,我们来解决第一个问题,“给谁服务的”前面我们讲了,标准的线性规划问题通常假定决策变量是连续的,也就是说,它们可以在其定义域内取任何实数值。这类问题可以使用单纯形法来进行解决。那么现实中还有一类问题,,这部分问题称为和。接下来就开始我们的正文。
2024-03-16 21:19:59
746
原创 第五课程--------对偶单纯形法
这是因为有些时候,原问题比较难求解,所以,我们尝试从另外一个角度去看待此问题,讲原问题进行。随后按照数学方法,对其进行求导,从而寻找其最优值(这个函数的局部最优就是全局最优)3.1 弱对偶性讲的是,最小化问题的值(min)一定大于最大化问题的值(max)。选择合适的话,约束问题的最优解也是无约束问题的最优解。3.2 强对偶性讲的是,在最优情况下,其最小化问题的最优值=最大化问题的值。3.3 互补松驰性讲的是,两个问题的约束互相乘对方的决策变量是等于0的。,例如我们给出如下的线性规划问题,
2024-03-12 15:12:54
1484
原创 Matlab的figure如何保存成jpg 【实测成功并可以自行更改dpi】
【代码】Matlab的figure如何保存成jpg 【实测成功并可以自行更改dpi】
2024-03-09 12:03:09
3080
原创 pandas.cut函数在分组过程中时给我赋负值-----解决方案
pandas.cut函数是用于将连续的数值型数据分割成几个区间,常用于将连续变量离散化。在这个函数中,**第一个参数第二个参数**是分割的区间数量。运行结果为。
2024-01-15 16:53:50
466
原创 Matlab从图(fig)中提取数据
在数据分析和处理过程中,我们经常需要从图像中提取有用的数据。Matlab作为一个强大的数据分析工具,提供了丰富的图像处理函数,可以帮助我们从图像中提取数据。本文将介绍如何在Matlab中提取图中数据的方法。1.2 创建一个(.m文件)或者在Matlab的运行窗口输入以下命令。该方法要比现有一些方法更加快捷方便,希望能帮助大家。注意:此时图必须是打开状态。
2024-01-14 14:19:56
21982
原创 项目中一些有用的操作
随后我们在pycharm终端中进行以下操作。中,因此需要输入以下命令来进行激活环境。1.1 创建一个python虚拟环境。1.4 退出当前虚拟环境。由于其激活环境存放在。1.3 安装需要的包。
2024-01-12 20:54:52
486
原创 运行shap模型时,出现Visualization omitted, Javascript library not loaded! Have you run `initjs()`
【代码】运行shap模型时,出现Visualization omitted, Javascript library not loaded!
2024-01-06 15:37:11
1577
1
转载 运筹学-一些目前企业中使用的方法介绍(有用信息可以提取)
VRP 问题有非常多的变种,比如限制配送车辆容积的 CVRP、车辆完成配送任务之后回程取货的 VRPB、限制配送车辆容积和路径长度的 DCVRP、客户对货物的送达时间有时间窗要求的 VRPTW 等。这些不同种类的 VRP 问题在菜鸟场景里面都有遇到,且都需要去求解,所以需要建设一个能够解多变种的 VRP 问题的求解器从学术角度来讲,VRP 问题有三类解法,第一类是精确解的算法,例如分支定界、动态规划、约束规划;第二类是构造启发式算法;第三类是最常见、最泛用的元启发式方法。
2023-12-26 11:24:52
410
转载 2023版Pycharm关闭一直显示closing project,正在关闭项目
点击 帮助 下的 查找操作英文版为 Help 下的 Find Action
2023-12-18 10:55:57
832
2
原创 yield函数使用注意事项
在 Python 中,yield 用于生成一个迭代器(iterator),而不是一个普通的列表或集合。当你使用 yield 生成一个迭代器时,它会创建一个生成器对象,允许你按需逐个产生值而不一次性生成所有值。当你对生成器进行迭代时,它会在每次迭代中执行 yield 语句,生成一个值并将状态保存在那里。如果你再次迭代同一个生成器,它会从上次停止的地方继续生成值,而不会重新开始。这意味着一旦你从生成器中获取了值,生成器会"记住"它的状态,以便在下一次迭代中继续生成下一个值。如果你想重新遍历生成器,你需要。
2023-10-29 18:34:57
169
原创 跟着沐神学深度学习-从入门到放弃的第3天(多层感知机实现)
至于为什么在多层感知机中加入激活函数,原因是因为,如果没有激活函数,那么多层其实大型的。, 我们还需要一个额外的关键要素: 在仿射变换之后对每个隐藏单元应用非线性的激活函数。:所谓多层感知机,其实就是将多个线性层进行串联,从而形成下图的形式。
2023-10-28 16:58:48
141
1
原创 跟着沐神学深度学习-从入门到放弃的第2天(基于softmax的图像分类问题以及简洁实现)
今天学习到了基于的图像分类问题。其本质就是将数据进行为区间[0,1]的概率问题选择问题。
2023-10-27 22:14:49
156
1
原创 函数和类的详细讲解
假如你在生活中只告诉别人说你要吃水果,别人也不知道你究竟要吃什么水果,毕竟水果只是一个大的种类,属于这个种类的有苹果、梨、葡萄等等很多很多,而具体到苹果、梨就可以称为水果这个类实例化的对象,这些对象都具有含水量高和甜的属性以及可以用来吃的方法。调用类属性的过程非常简单,它就是相当于在类里面定义了一个变量,然后通过【对象.属性】的语法调用这个变量而已。,那么可想而知,类方法的执行过程其实跟函数是一样的,【】的语法实例化的时候,这个方法内部的代码就会自动运行。】的语法来调用之前定义的类属性和类方法了。
2023-10-25 00:24:26
507
1
原创 跟着沐神学深度学习---从入门到放弃的第0天(数据操作)
如上面代码中,首先将两个张量维度向右靠齐,从右往左看,两个张量第四维大小相等,都为1,满足上面条件a;第三个维度大小不相等,但第二个张量第三维大小为1,满足上面条件b;第一个维度第一个张量有,第二个张量没有,满足上面条件b,因此两个张量每个维度都符合上面广播条件,因此可以进行广播。为了说明这一点,我们首先创建一个新的矩阵Z,其形状与另一个Y相同, 使用zeros_like来分配一个全。c.某个维度 一个张量有,一个张量也有但大小是1。b. 某个维度 一个张量有,一个张量没有。[3]. 张量转数组。
2023-10-24 15:45:14
132
原创 2023/9/17 基于pycharm的爬取电影250(二)
接上回,我们介绍了如何从网页中获取数据并有效提取数据,那么当我们得到这些数据时,这些数据是及其不美观的。因此,我们作为一个合格的美观师,我们需要对这些数据进行。此步,我们需要对html的一些基础知识有所了解,能找到我们想要的修改位置就可以,不需要完全看懂。由于文件比较多,自己把自己的项目发到附件中,有需要的可以下载。这样我们的一个框架就算完成了,剩下的就是要进一步完善。剩下的一些知识点只能靠大家,用到什么去查什么了。(根据自己想要的效果选择合适的HTML模板)随后我们将自己下载的html模板复制到。
2023-09-18 11:34:27
263
原创 2023/9/17 基于pycharm的爬取豆瓣电影250(一)
最近用一周的时间进行学习,因此特地记录所学知识,并向外输出以此加深自己的印象。
2023-09-17 22:32:58
2569
1
原创 基于Pycharm的Excel文件导入以及数据处理
基于Pycharm的Excel文件导入以及数据处理基于Pycharm的Excel文件导入以及数据处理用了一天的时间进行学习了利用python进行导入excel文件以及处理数据。由于自己是第一次学习,因此特地将所学知识进行总结与分享。
2023-09-09 22:37:36
10855
7
原创 Cplex学习安装以及使用方法
Gurobi简介:Gurobi是一种优化器,用于解决各种数学规划问题。它是一种商业软件,由美国Gurobi公司开发。Gurobi可以解决线性问题、二次型目标问题和混合整数线性和二次型问题。它是一款功能强大的优化器,具有突出的性价比,可以为客户在开发和实施中极大降低成本。
2023-09-03 13:21:44
1561
原创 Pytorch安装教程
虚拟环境可以为每个项目创建单独的隔离环境,达到分离不同项目的依赖关系的目的。在我们的项目开发中,可能需要一些三方库,那么就需要安装这个库,而另一个项目可能不需要任何其他第三方包,或者是需要其中某些三方包的其他的版本。当不同的Python项目需要相同插件的竞争或不兼容版本时,就会出现问题,导致程序莫名的异常。Anaconda 是在 conda(一个包管理器和环境管理器)上发展出来的。CUDA支持向下兼容,因此如果你的CUDA版本很高,可以选择低版本的Pytorch.(2)验证虚拟环境是否创建成功。
2023-09-02 12:04:08
259
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅