秒懂算法 | 基于图神经网络的推荐算法

本文介绍了图神经网络(GNN)在推荐算法中的应用,详细讲解了图卷积网络(GCN)的计算过程和物理原理。通过邻接矩阵、度矩阵等概念,阐述了GCN如何进行消息传递并保留图结构信息。GNN能够有效利用图结构,少量标注数据即可实现高精度预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图神经网络(Graph Neural Networks,GNN)是近几年兴起的学科,用来作推荐算法自然效果也相当好,但是要学会基于图神经网络的推荐算法之前,需要对图神经网络自身有个了解。

图卷积网络(Graph Convolutional Networks,GCN)提出于2017年。GCN 的出现标志着图神经网络的出现。深度学习最常用的网络结构是CNN 和RNN。GCN 与CNN 不仅名字相似,其实理解起来也很类似,都是特征提取器。不同的是,CNN 提取的是张量数据特征,而GCN 提出的是图结构数据特征。

01、计算过程

其实GCN 的公式本身非常简单,初期研究者为了从数学上严谨地推导该公式是有效的,所以涉及诸如傅里叶变换,以及拉普拉斯算子等知识。其实对于使用者而言,可以绕开那些知识并且毫无影响地理解GCN。

以下是GCN 网络层的基础公式,具体如下:

 

其中,

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TiAmo zhang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值