pytorch 的 conda3 直接安装

本文介绍了如何通过conda工具包管理NVIDIACUDA和cuDNN的安装,包括检查版本、自动匹配GPU版本、显卡信息获取以及在不同环境中安装特定版本的方法。特别提到了condauninstall、clean命令以及使用condasearch和install来下载和安装CUDA和cuDNN的过程。
摘要由CSDN通过智能技术生成

nvidia-smi  查看显卡cuda 版本

nvcc --version 查看nvcc版本

Torch.cuda.is_availabel() 判断cuda正确安装

、、、、

conda uninstall cpuonly   会自动装匹配的 gpu版本

conda clean -p      //删除缓存

conda clean --all

清华镜像里不一定有conda对应的 pytorch 版本,就会自动转成cpu版本安装

、、、、、、

显示显卡信息:

  1. import torch.cuda
  2. device = torch.device("cuda")
  3. memory_size = torch.cuda.get_device_properties(device).total_memory
  4. print("显存大小:", memory_size)
  5. frequency = torch.cuda.get_device_properties(device).clock_rate
  6. print("核心频率:", frequency)

CONDA 可以直接装 cuda

用该方法安装cuda和cudnn可以在不同环境中安装不同版本的cuda和cudnn,缺点是版本少且更新慢

codna search cudatoolkit

列表中选择合适的驱动

conda install cudatoolkit=11.3.1

列表中选择合适的cudnn

conda search cudnn

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值