SSR、SSE、SST、R-square比较与联系

本文深入探讨了线性回归中的基本概念,包括SSR(回归平方和)、SSE(残差平方和)和SST(总离差平方和),以及它们在评估模型拟合优度中的作用。R-square作为拟合优度的指标,衡量了模型预测能力相对于简单平均值预测的改善程度。通过数学证明阐述了SSR、SSE和SST之间的关系,帮助理解回归分析中的统计原理。
摘要由CSDN通过智能技术生成

1.基础概念

SSR:回归平方和        SSE:残差平方和        SST:总离差平方和      R-square:拟合优度

注: y_{i} 表示真实的观测值, \bar{y} 表示真实观测值的平均值, \hat{y} 表示拟合值     

定义:拟合优度近似表征模型学习到的有用信息的量。它将预测模型和仅以实际结果均值作为预测结果的模型进行比较。若预测模型预测结果不如后者,则表示预测模型比盲猜均值还要差,没有任何可解释性。

SSE,SSR,SST在线性回归模型的直观表示如下   

2.SSR、SSE、SST关系的数学证明

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值