分治法的思想与应用 Java

 

一:分治法的思想

 

   分治法(divide_and_conquer),通俗的来说,要想统治一片领土,可以把这片领土进行分解成若干块小部分,然后一块块地征服,直到所有的小土地都被征服了之后,意味着征服了这一片领土。

分治法的思想分为三部分:
 分(divide):将问题分解成规模更小的子问题
 治(conquer):将这些子问题逐个解决,若子问题规模较小而且容易解决则直接解,否则递归解决各个子问题
 合(combine):将已经解决的子问题进行合并,最终得出原问题的解
分治法的使用会伴随着递归的使用,所以对分治法的复杂度分析就是对递归的复杂度的分析。

 

二:分治法的应用
(1)归并排序:归并排序是采用分治法的一个非常典型的例子
 分(divide):将序列一中点为中心一分为二,分为左区间和右
 治(conquer):把左右两个子区间分别进行排序
 合(combine):最后把左区间和右区间合并成有序序列
 T(n)=2T(n/2)+ Θ(n)= Θ(nlgn)
 其中,T(n/2)表示递归的复杂度,2表示分为了左右两个区间,Θ(n)表示合并n个元素的复杂度

 

import java.util.Arrays;
/*
 * 归并排序
 */
public class MergeSort {
	
	public static void merge(int []a ,int low,int mid,int high)
	{
		int[] test = Arrays.copyOf(a, high-low+1);
        int i = low;
        int j = mid + 1;
        int k = 0;
        // 把较小的数先移到新数组中
        while (i <= mid && j <= high) {
            if (a[i] < a[j]) {
            	test[k++] = a[i++];
            } else {
            	test[k++] = a[j++];
            }
        }
        // 把左边剩余的数移入数组
        while (i <= mid) {
        	test[k++] = a[i++];
        }
        // 把右边边剩余的数移入数组
        while (j <= high) {
        	test[k++] = a[j++];
        }
        // 把新数组中的数覆盖nums数组
        for (int k2 = 0; k2 < test.length; k2++) {
           a[k2 + low] = test[k2];
        }		
	}
	
	public static void mergeSort(int[] a,int low,int high)
	{
		int mid=low+(high-low)/2;
		if(low>=high) return;
		mergeSort(a,low,mid);
		mergeSort(a,mid+1,high);
		//归并
		merge(a,low,mid,high);
		System.out.println(Arrays.toString(a));
	}
	
	public static void main(String[] args)
	{
		int a[] = {48,51,69,81,23,26,54,85,64,91};
        mergeSort(a,0,a.length-1);
        System.out.println("排序之后" + Arrays.toString(a));    
	}

 

 

(2)二分查找:二分查找又叫折半查找
 分(divide):把n个元素分成大致相等的两部分,取中间的元素与x进行比较
 治(conquer):在一个子数组中进行递归查找
 合(combine):因为实际上并没有真正的把序列分开,所以最后不用进行合并
 T(n)=T(n/2)+ Θ(1)=T(lgn)

 

 

 

 

/*
 * 二分查找
 */
public class BinarySearch {

    private BinarySearch(){}
    
    public static int binarySearch(Comparable[] arr,int low,int high,Comparable target)
    {
    	int mid=(high-low)/2+low;
    	while(low<=high)
    	{    	
	    	if(arr[mid].compareTo(target)==0)
	    	{
	    		return mid;
	    	}
	    	if(target.compareTo(arr[mid])>0)
	    	{
	    		return  binarySearch(arr,mid+1,high,target);
	    	}
	    	else
	    	{
	    		return binarySearch(arr,low,mid-1,target);
	    	}
    	}  	
    	return -1;
    }

    public static void main(String[] args) {

    	Integer srcArray[] = {23, 26, 48, 51, 54, 64, 69, 81, 85, 91};   
        System.out.println(binarySearch(srcArray,0,srcArray.length,81));
    }
}

(3)乘方问题:求x的n次方
 T(n)=T(n/2)+ Θ(1)=T(lgn)
 分(divide):把n进行分解
    当n为奇数时:x^n=x^(n-1)/2  *  x^(n-1)/2  *x
    当n为偶数时:x^n=x^(n/2) * x^(n/2)
 治(conquer):使用递归进行求解x^(n-1)/2或者x^(n/2)
 合(combine):计算最终结果

 

public class ChengFangWenTi {
	
	public static long power1(long x,long n)
	{
		if(n==1)
		{
			return x;
		}
		return   x*power(x,n-1);	
		
	}
	
	public static long power(long x,long n)
	{
		if(n==1)
		{
			return x;
		}
		if(n%2==1)				//当n为奇数的时候
		{
			return x*power(x*x,(n-1)/2);
		}
		return   power(x*x,n/2);	//当n为偶数的时候
	}
	
	public static void main(String [] args)
	{
		long x=2,n=10;
		long a=power(x, n);	
		System.out.println(a);
	}
}

(4)斐波那契数列
 分(divide):把F(n)的问题分成求F(n-1)+F(n-2)的问题
 治(conquer):使用递归求解子问题
 合(combine):计算最终问题的解

 

/*
 * 斐波那契数列:又叫兔子数列
 * F(0)=0,F(1)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*)
 */
public class Fibonacci {
	 public static int show(int n){
		 if(n==0)
		 {
		 	return 0;
		 }
	        if(n==1){
	            return 1;
	        }
	        if(n==2){
	            return 1;
	        }
	        return show(n-1)+show(n-2);
	  }
	 
	 public static void main(String[] args)
	 {
		 int n=10;
		 System.out.println(show(n));
	 }
}

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qq_41644183

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值