MMDetection 概述
MMDetection是商汤和港中文大学针对目标检测任务推出的一个开源项目,它基于Pytorch实现了大量的目标检测算法,把数据集构建、模型搭建、训练策略等过程都封装成了一个个模块,通过模块调用的方式,我们能够以很少的代码量实现一个新算法,大大提高了代码复用率。
整个MMLab家族除了MMDetection,还包含针对目标跟踪任务的MMTracking,针对3D目标检测任务的MMDetection3D等开源项目,他们都是以Pytorch和MMCV以基础。Pytorch不需要过多介绍,MMCV是一个面向计算机视觉的基础库,最主要作用是提供了基于Pytorch的通用训练框架,比如我们常提到的Registry、Runner、Hook等功能都是在MMCV中支持的。另外,MMCV还提供了通用IO接口、多种CNN网络结构、高质量实现的常见CUDA算子,这里就不进一步展开了。
MMDetection 各个模块
- 注册数据集:CustomDataset是MMDetection在原始的Dataset基础上的再次封装,其__getitem__()方法会根据训练和测试模式分别重定向到prepare_train_img()和prepare_test_img()函数。用户以继承CustomDataset类的方式构建自己的数据集时,需要重写load_annotations()和get_ann_info()函数,定义数据和标签的加载及遍历方式。完成数据集类的定义后,还需要使用DATASETS.register_module()进行模块注册。
- 注册模型:模型构建的方式和Pytorch类似,都是新建一个Module的子类然后重写forward()函数。唯一的区别在于MMDetection中需要继承BaseModule而不是Module,BaseModule是Module的子类,MMLab中的任何模型都必须继承此类。另外,MMDetection将一个完整的模型拆分为backbone、neck和head三部分进行管理,所以用户需要按照这种方式,将算法模型拆解成3个类,分别使用BACKBONES.register_module()、NECKS.register_module()和HEADS.register_module()完成模块注册。
- 构建配置文件:配置文件用于配置算法各个组件的运行参数,大体上可以包含四个部分:datasets、models、schedules和runtime。完成相应模块的定义和注册后,在配置文件中配置好相应的运行参数,然后MMDetection就会通过Registry类读取并解析配置文件,完成模块的实例化。另外,配置文件可以通过_base_字段实现继承功能,以提高代码复用率。
- 训练和验证:在完成各模块的代码实现、模块的注册、配置文件的编写后,就可以使用./tools/train.py和./tools/test.py对模型进行训练和验证,不需要用户编写额外的代码。
MMDetection:一个目标检测的Pytorch开源框架
10万+

被折叠的 条评论
为什么被折叠?



